
Page 1 of 95

Project Number: Contract Number: INFSO-ICT-224287

Project
acronym:

VITAL++

Project Title: Embedding P2P Technology in Next
Generation Networks: A New
Communication Paradigm &
Experimentation Infrastructure

Title of Report Peer-to-Peer client evaluation and
market overview

Instrument: STREP

Theme: ICT-2-1.6

Report Due: M4

Report Delivered: M5

Lead Contractor for this deliverable: CTRC

Contributors to this deliverable: E. Pallis (CTRC), E. Markakis (CTRC), A. Sideris
(CTRC), Odysseas Koufopavlou (UoP), Charalabos
Skianis (UoP), Nikolaos Efthymiopoulos (UoP), Nico
de Abreu (RBB), Bjoern Stockleben (RBB), Jens
Fiedler (FOKUS), Christian Riede (FOKUS), George
Karidis (BCT), George Kapelios (VoG), Shane
Dempsey (WIT), Jose Luis Pena (TID), Juana
Sanchez (TID).

Estimated person Months: 7

Start date of project: 1st June 2008

Project duration 30 months

Revision: Version 1.0

Dissemination Level: PU - Public

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 2 of 95

This page intentionally blank

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 3 of 95

1 Table of Contents

1 Table of Contents..3
2 List of Figures...5
3 Document History ...6
4 Executive summary ...7
5 Introduction ...8
6 State of the art ...9

6.1 State-of-the-art in P2P ..9
6.1.1 Content Distribution ..9
6.1.2 Peer-assisted video on demand (VoD)....................................10
6.1.3 P2P live streaming ..11

6.2 The IP multimedia subsystem (IMS)..13
6.2.1 3GPP IMS Releases..17
6.2.2 ETSI TISPAN ..20

6.3 State-of-the-art in IMS and P2P cooperation...................................21
7 Usage scenarios..24

7.1 Scenario 1: RBB remote ..24
7.1.1 Content Access outside a geo-blocked area.............................24
7.1.2 Out-Of-Area content distribution ...24

7.2 Scenario 2: SoftRadio – Personalised Radio Experience25
7.2.1 Mixing programmes from different sources25
7.2.2 End user Service – The Softradio concept25

7.3 Scenario 3: Remote Rural Areas ...28
8 Generic requirements/criteria regarding the clients30

8.1 Reason for Evaluation ...30
8.2 Basis for Evaluation ..31
8.3 Criteria and requirements for IMS operation33

9 P2P Clients evaluation..35
9.1 P2P Clients for content distribution..35

9.1.1 Gnutella - Limewire ...35
9.1.2 Cabos..40

9.2 P2P Clients for VoD...43
9.2.1 Azureus (Vuze)...43
9.2.2 Miro ..49

9.3 P2P Clients for live streaming ...54
9.3.1 CoolStreaming..54

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 4 of 95

9.3.2 TVUPlayer ..55
9.3.3 Peercast ..56
9.3.4 VMukti - Free VoIP Web Conferencing60
9.3.5 DistribuStream ...64
9.3.6 Split Stream...66
9.3.7 Tribler (Swarm Player)...69

10 IMS clients as a basis for VITAL++ functionality74
10.1 VITAL IMS client ..74

10.1.1 VITAL IMS Client description...75
10.1.2 Evaluation of VITAL IMS client concerning compatibility with the
VITAL++ use cases ...80

10.2 The enhanced VITAL client ..82
10.3 Monster IMS client ...83

10.3.1 IMS Engine ..84
10.3.2 Application Components...86
10.3.3 Application Framework...87
10.3.4 Applications ...88
10.3.5 Evaluation of Monster client concerning compatibility with the
VITAL++ use cases ...89

11 Overall Evaluation and Design Goals for P2P and IMS clients90
12 Conclusions..93

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 5 of 95

2 List of Figures

Figure 1 IMS Layered Architecture 14
Figure 2 IMS Functions and Reference Points 15
Figure 3 IMS Timeline 17
Figure 4 “The Radio Clock” – an abstract hourly schedule 26
Figure 5 VITAL++ SoftRadio Mixer 26
Figure 6 Remote Rural Area. VoD scenario 28
Figure 7 Remote Rural Area VoD scenario. Signalling and media flows. 29
Figure 8 Limewire Start-up screen 35
Figure 9 LimeWire Search Interface 36
Figure 10 Mojito Distributed Hash table Ping Sequence 38
Figure 11 Cabos network selection 40
Figure 12 Cabos Preference 40
Figure 13 Cabos File sharing 41
Figure 14 Video selection 43
Figure 15 Download of a video 43
Figure 16 Miro preferences 49
Figure 17 Default interface of Miro Player 50
Figure 18 Downloading of Video 50
Figure 19 Peercast Webpage 56
Figure 20 Peercast Preference 57
Figure 21 Vmukti Chat service 60
Figure 22 DistribuStream Server 64
Figure 23 DistribuStream statistics Webpage 64
Figure 24 Settings dialog 76
Figure 25 Main Window – Debug Console 76
Figure 26 Main Window - Media Player 77
Figure 27 Main Window - Media Player (movie 0) 77
Figure 28 Main Window - Media Player (movie 1) 78
Figure 29 Main Window - Chat Board 79
Figure 30 Main Window – Collaborative Drawing 80
Figure 31 Transformation of the VITAL client/server to match P2P network
operations 83
Figure 32 MONSTER framework 84

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 6 of 95

3 Document History

The aim of this deliverable is to provide relevant information regarding the Peer-to-
Peer client evaluation and market overview

Revision
Month

Filename
version

Summary of Changes

M1 V0.9 Report

M1 V1.0 Template corrections

M2 V1.1.(x) State-of-the-art and business cases

M3 V2.1.(x) Criteria and requirements

M4 V2.2.(x) P2P Clients evaluation

M4 V2.3.(x) P2P and IMS clients evaluation

M4 V2.4.(x) P2P and IMS clients evaluation

M4 V2.5.(x) P2P and IMS clients evaluation

M4 V3.1.(x) Corrections and amendments

M5 V3.2.(x) Refinements and discussion on the entire D2.1

M5 Final Finalisation of D2.1

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 7 of 95

4 Executive summary

This “VITAL++” deliverable (D2.1) – “Peer-to-Peer client evaluation and
market overview”, part of Workpackage 2 (WP2), Task 2.1 – elaborates on the
multitude of existing Peer-to-Peer Software Clients, with special focus on their
feature set. It initially studies and analyses a number of usage scenarios, for
deriving the criteria set, according to which existing P2P Client evaluation is
carried out. Special focus is set on the ability of P2P clients to be
enhanced/reused within IMS networks. The deliverable concludes by identifying
the key features required to support content distribution in an IMS
environment, and which will be used prior to the selection of the P2P clients
that will be used in WP3.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 8 of 95

5 Introduction

This document is focused on the market overview of existing P2P Clients, by
evaluating and analysing their feature set, with special focus on their ability to
be enhanced/reused within IMS networks. Based on the results of the
evaluation process, a set of features for P2P clients is identified suitable for
supporting content distribution and meeting the operators’ requirements as
they stem from a number of use cases. Eventually, some of the evaluated P2P
clients will form the basis for feature adaptation of the client selected and used
in Work Package3.
More specifically, the deliverable initially elaborates on the current state-of-
the-art in P2P systems and IMS technology (Section 6), by studying and
analysing architectures, topologies and delivery mechanisms according to three
distinct use-cases: a) content (file) distribution , b) peer-to-peer assisted video
on demand, and c) peer-to-peer live streaming. Following these use-cases,
Section 7 elaborates on three representative scenarios that depict/reflect the
vision of VITAL++ from a service provider point-of-view, including remote
access to content, personalised content access (SoftRadio), as well as live
streaming of content provided by different service providers and remote access
to content from rural areas. Based on these scenarios, the deliverable studies
(in Section 8) the criteria according to which P2P Client evaluation will be
carried out, by elaborating on the reason for evaluation, the basis upon which
the P2P clients will be evaluated, and by identifying the criteria and
requirements for IMS operation. Following these criteria/requirements, Section
9 presents the evaluation of existing P2P clients, categorised according to their
use-case, i.e. for the content distribution, VoD and live-streaming scenario.
Similarly, Section 10 presents two IMS clients contributed by two partners, and
argues about the extensions that need to be designed in the context of this
project. The first client is the IMS one built as part of a predecessor EU project,
called VITAL, while the second client is the Monster IMS one, part of the OPEN
IMS framework.
Finally Section 11 elaborates on the overall evaluation and design goals for P2P
and IMS clients to be adopted by VITAL++, while Section 12 concludes this
deliverable by summarising the findings of this market overview.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 9 of 95

6 State of the art

In this chapter, we will reflect the ongoing work on the main technologies,
which form the base of the VITAL++ project. These are P2P services delivery
methods (including the content distribution, the live streaming and video on
demand), the IP multimedia subsystem (IMS), and actual related work for
combining those technologies.

6.1 State-of-the-art in P2P

6.1.1 Content Distribution

Content distribution is the most well understood P2P service from the scientific
community. In content distribution a server contains large amount of data and
they must be transferred to a vast number of peers. Files are cut into blocks
and each block is delivered in a small subset of peers. Peers exchange blocks
until they retrieve the whole content. There are four major issues that we have
to address in order to develop an efficient content distribution system.
The major factor that affects the performance is content bottleneck. This is the
case in which peers haven’t different blocks to exchange and their upload
bandwidth remains idle. To efficiently download the file, it is important to
design the file-sharing protocol such that each peer is matched with others
who have the pieces of the file that it needs and further, to ensure that the
downloading bandwidth of each peer is fully utilized.Another promising
approach towards the solution of this problem is network coding1. In Network
coding each peer creates a linear combination from many blocks and transmits
this combination instead of single blocks. When a peer receives enough blocks
to decode them performs this action and regains the original blocks.
The second factor is the rate in the change in the number of peers in the
system. Therefore, it is useful to study how the number of peers evolves as a
function of the request arrival rate, the peer departure rate, the
uploading/downloading bandwidth of each peer, etc.
The third factor is the development of incentives to prevent free-riding: Free-
riding is a major cause for concern in P2P networks. Free-riders are peers who
try to download from others while not contributing to the network, i.e., by not
uploading to others. Thus, most P2P networks try to build in some incentives
to deter peers from free-riding. Once the incentive mechanism is introduced
into the network, each peer may try to maximize its own net benefit within the
constraints of the incentive mechanism. Thus, it is important to study the
effect of such behavior on the network performance.

1 C. Gkantsidis and P. Rodriguez. Network coding for large scale content distribution. Infocom, 2005.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 10 of 95

At last but not least scalability is a major concern and the motivation of the
utilization of P2P systems: To realize the advantages of P2P file sharing, it is
important for the network performance to not deteriorate, and preferably to
actually improve, as the size of the network increases.
In order to minimize the load that P2P content distribution introduces
to the network provider there are three useful techniques:

• the first is a locality aware overlay2, where peers exchange blocks and
metadata with the closest in the underlying physical network, and

• the second is caching of data in locations that they requested with high
frequency3.

• the third is the avoidance of network paths that have high cost according
to the ISP contracts

Earlier approaches4 have shown that cooperation between IMS and a P2P
content distribution system (BitTorrent) is possible, but must be secured with
appropriate DRM techniques. Nevertheless, a smooth integration into the IMS
architecture is still far from being achieved.

6.1.2 Peer-assisted video on demand (VoD)

In Peer-assisted video on demand (VoD), the peers that are viewing the
publisher’s videos also assist in redistributing the videos. Since peer-assisted
VoD can move a significant fraction of the uploading from the server to unused
resources (e.g. bandwidth) of the peers, it can potentially dramatically reduce
the publisher’s bandwidth costs. As the aggregate bandwidth in these systems
varies5 there are three modes in which the systems works:

• the surplus mode where the provided upload bandwidth from peers
exceeds the demand,

• the balance mode where both are equal, and
• the deficit mode where the provided upload bandwidth is less than the

demand.
There are many proposed techniques for bandwidth allocation in VoD6. Due to
the different parts of the video that requested and the various locations that
they are located a wise policy for resource allocation must be applied in order

2 http://www.wcl.ece.upatras.gr/index.php?sid=&lang=el&id=51
3 Jussi Kangasharju, Keith W. Ross, David A. Turner, Optimizing File Availability in Peer-to-Peer Content
Distribution, Infocom 2007.
4 J. Fiedler, T. Magedanz, A. Menendez: “IMS secured content delivery over peer-to-peer networks”, Proceedings of
SIGMAP 2007, Spain, July 28-31, 2007, INSTICC Press, Portugal, p. 5-12, ISBN 978-989-8111-13-5.
5 Cheng Huang, Jin Li, Keith W. Ross, Can video on demand be profitable? , SIGCOMM 2007.
6 Siddhartha Annapuredd, Saikat Guha, Christos Gkantsidis Is HighQuality VoD Feasible using P2P Swarming?,
WWW 2007.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 11 of 95

to assign and schedule uploads to peers. Pre-fetching is applied and was found
to be a promising approach towards this goal. The last critical issue is overlay
topology management where algorithms for peer matching and optimization
applied. It has been shown that overlay architecture greatly affects the
performance of peer assisted VoD.
On the other hand to the best our knowledge there are many unsolved issues
towards the creation of a Peer-assisted video on demand streaming system,
thus, there is a need to develop such a system starting first from the
development of a live streaming system and its expansion.

6.1.3 P2P live streaming

P2P streaming is a real time application with strict delivery time constraints
and very demanding in terms of the aggregate bandwidth required for the
delivery of the stream to the participating peers. In general, a server
generates a video stream at a given service rate which is then divided into
blocks followed by their delivery to a small subset among the participating
peers. As a final step, all peers exchange these blocks in order to reproduce
the whole video stream.
Peers involved in these systems, may have heterogeneous upload bandwidth
capabilities while the average upload bandwidth capability of the participating
peers constrains the maximum service rate of the video stream that can be
delivered successfully to all peers7. An efficient P2P streaming system must be
able to deliver a video stream with service rate as close as possible to the
average upload capability of the participating peers with the smallest possible
delay, called setup time. With the term setup time we define the time interval
between the generation of a block from the origin server and its distribution to
every peer in the system.
Furthermore, a P2P live streaming system has to adapt to the dynamic
underlying network conditions and cope with dynamic node arrivals and
departures. This results in varying number of peers and uploading capacities
which impact the stability of the system with respect to the uninterrupted
delivery of the streaming service. Finally, fairness among nodes guarantees
equal bandwidth distribution to the participating nodes and so they acquire
equal number of blocks of the video stream in the predefined setup time.
Several approaches that have been recently proposed for creating P2P
streaming systems may fall into two categories.
The first is based on a formation of forests of trees whereby each node is a leaf
in every tree but one. Blocks are assigned equiprobably into a number of

7 Kumar R., Liu Y., Ross K. W., Stochastic Fluid Theory for P2P Streaming Systems, In 26th IEEE International
Conference on Computer Communications (INFOCOM), pp. 919-927. IEEE Press, Anchorage (2007).

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 12 of 95

stripes equal to the number of the formed trees. Each tree distributes (pushes)
one stripe by propagating each one of its blocks from parent to its children. In
this category blocks are pushed according to the overlay topology. SplitStream
is a distributed implementation of this approach that is based on a locality
aware DHT called Pastry8. SplitStream and systems alike have the advantage
of being topologically aware (trees are formed according to the network
distance between nodes) leading to small setup time as the propagation of a
block from the root of the tree to the leaf nodes is done through nodes which
are physically close in the underlying network. However these systems suffer
from two main drawbacks: a) they don’t take into account the heterogeneous
upload capacities of the peers9, and b) they can’t cope up with the dynamic
behavior of the participating peers as well as the underlying network as
observed in commercial P2P streaming systems10,11,12. When a peer leaves the
overlay, the path between it and its descendants is broken resulting in idle
descendants during the reconstruction phase of the tree.
In the second category13,14, each node maintains connections with a relatively
small number of nodes which are considered as its neighbors in the overlay.
The overlay is constructed randomly or according to the upload capacities of
the nodes that participate in it. Blocks that are generated by a server have
playback deadlines. Each peer exchanges and maintains a number of lists
(buffers), one per neighbor. Each one of these buffers contains those blocks of
its neighbor that their playback deadline has not expired yet. To this end, a
peer is capable at any time of making a decision about which block should be
transmitted to which neighbor. This decision process is implemented by a
scheduler running in every node. The characteristic of these systems is that
the block transmissions are agnostic to the overlay topology.
Due to their architecture the main advantage of them is their flexibility which
allows them to take advantage of the heterogeneity of the participating peers

8 Rowstron A., Druschel P., Pastry: Scalable, Distributed Object Location and Routing for Large-scale Peer-to-peer
Systems,In 18th IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg, (2001).
9 Magharei N., Rejaie R., Guo Y., Mesh or Multiple-Tree: A Comparative Study of Live P2P Streaming Approaches, In
26th IEEE International Conference on Computer Communications (INFOCOM), pp. 1424-1432. IEEE Press,
Anchorage (2007).
10 X. Hei, C. Liang, J. Liang, Y. Liu and K.W. Ross, A Measurement Study of a Large-Scale P2P IPTV System, IEEE
Transactions on Multimedia Volume: 9, Issue: 8 pp. 1672-1687 (2006).
11 X. Hei, C. Liang, J. Liang, Y. Liu and K.W. Ross, A Measurement Study of a Large-Scale P2P IPTV System,
November 2006, to appear in IEEE Transactions on Multimedia.
12 PPLive http://www.pplive.com.
13 Massoulie L., Twigg A., Gkantsidis C., Rodriguez P., Randomized decentralized broadcasting algorithms, In 26th
IEEE International Conference on Computer Communications (INFOCOM), pp. 1073—1081. IEEE Press, Anchorage
(2007).
14 Magharei N., Rejaie R., Guo Y., Mesh or Multiple-Tree: A Comparative Study of Live P2P Streaming Approaches,
In 26th IEEE International Conference on Computer Communications (INFOCOM), pp. 1424-1432. IEEE Press,
Anchorage (2007).

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 13 of 95

and deal with the dynamic behavior of the system leading to higher levels of
bandwidth utilization. However, these systems can’t exploit the network
proximity among the peers that exchange blocks. This means that the time
required for a block to be transferred from one node to another and hence the
required time for all nodes to acquire the block (setup-time) could reduced if
the overlay exploits the locality between peers. Another drawback of overlays
agnostic to locality is that buffer exchanges between neighbors performed with
high network latency. This effect leads duplicate block transmissions and so to
wasted upload bandwidth.

6.2 The IP multimedia subsystem (IMS)
The IMS is an architectural framework for delivering IP-multimedia to mobile
users. It was originally designed by the wireless standards body 3rd
Generation Partnership Project (3GPP), and was intended to lead a way for
mobile networks beyond GSM. Its original formulation (3GPP R5) represented
an approach to delivering "Internet services" over GPRS. This vision was later
updated by 3GPP, TISPAN by requiring support of networks other than GPRS,
such as Wireless LAN and fixed line.
The IMS follows a three tiered architecture: Application Layer, Call Control
Layer and Transport Layer. The Application Layer provides an independent
service layer for the execution of value-added services and content. The Call
Control Layer bases on advanced signalling protocols and is arranged in
softswitches or session servers. The Transport Layer consists of dedicated
nodes, so called Media Gateways. They work as routers in the classical IP
fashion and process content data controlled by the Call Control Layer. The IMS
layered architecture is depicted in the following illustration (Figure 1).

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 14 of 95

Figure 1 IMS Layered Architecture

The IMS core network system consists of different functions, interacting over
standardized interfaces (reference points), which form one IMS administrative
network. A function is not necessarily identical to a node (hardware box): an
implementer is free to combine 2 or more functions in one single node, or to
spread a single function over multiple nodes. Each function can also be present
multiple times in a single network, for load balancing, availability purposes or
organizational issues. Reference points are realized by standardized protocols,
like SIP or DIAMETER. Figure 2 illustrates the most relevant IMS functions of
the core network and the related reference points between them.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 15 of 95

Figure 2 IMS Functions and Reference Points

The Home Subscriber Server (HSS) is the master database for a given user. It is the
entity containing the subscription-related information to support the network entities
actually handling calls/sessions. The HSS is responsible for holding user related
information as:

• User Identification: Numbering and addressing information
• User Security information: Network access control information for

authentication and authorization
• User Location information at inter-system level: the HSS supports the

user registration, and stores inter-system location information, etc.
• User profile information: E.g. subscribed services, etc.

The Application Server (AS) is an IMS entity that hosts and executes IP
multimedia services. The AS is the “expansion slot” for an IMS network. Here,
3rd party products and services are located. The AS can operate in three
different modes:

• SIP proxy mode
• SIP user agent (UA)
• SIP back-to-back-user-agent (B2BUA)

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 16 of 95

IMS Enabler IMS enabler are special ASs with generic functions which perform
functionalities like Presence, Group Management or Charging.
The Policy Decision Function (PDF) is responsible for making policy decisions
based on session and media-related information obtained from the P-CSCF.
Policy decisions refers in this case to QoS control.
The Proxy-Call Session Control Function (P-CSCF) is the rst contact point for
users within the IMS. All SIP signaling trac from or to the UE goes via the P-
CSCF. The P-CSCF validates the request, forwards it to selected destinations
and processes and forwards the response.
The Interrogating-CSCF (I-CSCF) is a contact point within an operator's
network for all connections destined to a subscriber of that network operator.
The I-CSCF contacts the HSS to obtain the name of the S-CSCF that is serving
a user and forwarding a SIP request or response to the S-CSCF. The I-CSCF
provides a hiding functionality. The I-CSCF may contain functionality called the
Topology Hiding Inter-network Gateway (THIG). THIG could be used to hide
the conguration, capacity and topology of the network from outside an
operator's network
The Serving-CSCF (S-CSCF) is the heart of the IMS. It is located in the home
network and performs session control and registration services for UEs. While
UE is engaged in a session the S-CSCF maintains a session state and interacts
with service platforms and charging functions as needed by the network
operator for support of the services. There may be multiple S-CSCFs, and S-
CSCFs may have dierent functionalities within an operator's network.
MS The Media Server (MS) is an IMS entity that consists of functional
components: Multimedia Resource Function Controller (MRFC) and The
Multimedia Resource Function Processor (MRFP).
The MRFC is needed to support bearer related services, such as conferencing,
announcements to a user or bearer transcoding.
The MRFP provides user-plane resources that are requested and instructed by
the MRFC. The MRFP performs the following functions:

• Mixing of incoming media streams (e.g., for multiple parties)
• Media stream source (for multimedia announcements)
• Media stream processing (e.g., audio transcoding, media analysis)

The Media Gateway consists of three essential IMS components:
• Media Gateway Control Function (MGCF)
• Signaling Gateway (SGW)
• Multimedia Gateway Function (MGF).

So the Media Gateway enables communication between IMS and circuit
switched (CS) users.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 17 of 95

6.2.1 3GPP IMS Releases

IMS was first standardized in 3GPP Release 5. It then experienced multiple
extensions, expansions, updates and spinoffs. Figure 3 gives an overview of
the evolution of IMS throughout all the standardization bodies.

Figure 3 IMS Timeline

The following table gives an overview of the different 3GPP IMS releases and
their related features.

Release 5 • VoIP, IM, Presence support on top of GPRS
• IMS Architecture: IMS Architecture, network entities,

reference points (interfaces) between the network
entities.

• User Identities: Public/Private User Identity, usage of the
SIP-URI and TEL-URI, ISIM, the use of the USIM instead
of the ISIM.

• IMS Session Control:
o IMS Registration
o IMS Session Routing
o Session- Modification and Teardown
o SIP Signaling Compression

• IMS Service Control:

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 18 of 95

o invocation/control of IMS Application Servers
based on Filter Criteria in the CSCF

o IM-SSF and there-use of CAMEL Services
o Interconnect with the OSA-GW and the use of OSA

services
• QoS Mechanisms:

o QoS Preconditions
o QoS/Media Authorization based on the PDF

• Security Mechanisms:
o IMS User Authentication
o Message Integrity Protection,
o IMS Network Domain Security

Release 6 • QoS, PoC support
• IMS SIM cards
• IPv6 deployment
• IMS Interworking:

o With the CS-Domain (more details for CS and
PSTN)

o With SIP Clients in the Internet (IPv4/v6
Interworking)

o WLAN access to the IMS (not completed)
• IMS Session Control:

o multiple registrations
o routing of group identities

• Security Mechanisms:
o confidentiality protection of SIP messages
o use of public key infrastructure
o Ut-interface security
o early IMS security

• IMS Services:
o Presence
o Instant Messaging
o Conferencing
o Group management

Release 7 • Identification of Communication Services in IMS
• Supporting Globally Routable User Agent URIs in IMS
• IMS Support of Conferencing and Messaging Group

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 19 of 95

Management
• Location Services enhancements (LCS3)
• Advanced Global Navigation Satellite System (A-GNSS)

concept (LCS3-AGNSS)
• Enhancements for fixed broadband access to IMS
• Access Class Barring and Overload Protection
• Protocol-related new Features

o DIAMETER on the GGSN Gi interface
o DIAMETER on the PDG Wi inteface

• Support of SMS over generic 3GPP IP access
• Dynamic and Interactive Multimedia Scenes (DIMS)
• Personal Network Management (PNM)
• WLAN-UMTS Interworking Phase 2

Release 8 • SAE for LTE access
• InterWorking Function (IWF) between MAP based and

Diameter based interfaces
• Flexible Alerting
• Support of Packet Cable access
• corporate network access
• Interworking between User-to-User Signalling (UUS) and

SIP
• Earthquake and Tsunami Warning System
• Customized Alerting Tone (CAT) Service
• Value-Added Services for Short Message Service
• 3G Long Term Evolution - Evolved Packet System (RAN)

Release 9 • Services Alignment and Migration
• Registration in Densely-populated area (RED)
• End-User Identity
• Public Warning System
• Support of Personal Area Networks (PAN)
• User Data Convergence
• Protection against Unsolicited Communication for IMS

(PUCI)
• Machine-type Communications

Table 1 3GPP IMS Releases - Feature List

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 20 of 95

6.2.2 ETSI TISPAN

TISPAN is the ETSI core competence centre for fixed networks and for
migration from switched circuit networks to packet-based networks with an
architecture that can serve in both to create the Next Generation Network.
Building upon the work already done by 3GPP in creating the SIP-based IMS
(IP Multimedia Subsystem), TISPAN and 3GPP are now working together to
define a harmonized IMS-centric core for both wireless and wireline networks.
This harmonized ALL-IP network has the potential to provide a completely new
telecom business model for both fixed and mobile network operators. Access
independent IMS will be a key enabler for fixed/mobile convergence, reducing
network installation and maintenance costs, and allowing new services to be
rapidly developed and deployed to satisfy new market demands.
TISPAN considers effective cooperation with external bodies as essential to the
coordination of the global message and further globalization of the TISPAN
NGN product.

6.2.2.1 Release 1
NGN Release 1 was launched by TISPAN in December 2005, providing the
robust and open standards that industry can use as a reliable basis for the
development and implementation of the first generation of NGN systems. The
addressed features are:

• Overall NGN Stage 1&2
• Network Attachment Subsystem (NASS)
• Resource and Admission Control Subsystem (RACS)
• PSTN/ISDN Emulation Subsystem (PES)
• PSTN/ISDN Simulation Subsystem (PSS)
• IMS-simulated PSTN/ISDN Supplementary Services (PSS)

o Videotelephony over NGN
o Emergency services

• IMS-specific Supplementary Services (ISS)
o Presence Service (Presence)
o IMS Messaging

• Interworking NGN – CS networks – IP networks – IMS
• NGN management

6.2.2.2 Release 2
TISPAN has published Release 2, with a focus on enhanced mobility, new
services and content delivery with improved security and network
management. The addressed features in Release 2 are:

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 21 of 95

• IMS-specific Supplementary Services (ISS)
o SMS over NGN IMS
o Direct Communication (DC) Service

• IP Television (IPTV)
• Fixed Mobile Convergence (FMC)
• Corporate Network
• Customer Network Gateway (CNG)
• Overload and Congestion Control (OCC)
• NGN Subscription Management (SM)

6.2.2.3 Release 3
Currently, ETSI TISPAN is working on release 3 of the specifications and
standards. As this work is quite new, only enhancements and improvements of
already existing features from releases 1 and 2 are on the workplan.

6.3 State-of-the-art in IMS and P2P cooperation
Ongoing work for P2P and IMS cooperation and integration mainly focuses on
the signalling level. This means that mainly external or client based DHTs are
used for backup purposes for a centralistic system in case of its failure.
The SIP, the core signalling protocol of IMS, is of interest for P2P overlays. At
the IETF, a working group has been established, which defines methods and
procedure to use SIP for constructing P2P overlays. This SIP extension is called
P2PSIP15.
One approach for P2P and centralistic interworking is the CoSIP, developed at
the University of Tübingen16. In their solution, they introduce a CoSIP proxy
server, which replaces the traditional SIP proxy in a fashion, that it can chose
either to use a centralistic architecture or in case of failure, a P2P based DHT.
Here, the DHT is not necessarily build by the SIP clients, as one of the design
goals was to keep these unmodified. This solution does not explicitly focus on
IMS, but gives a good example, on how an originally centralistic service can
benefit from a P2P system.

15 D. Bryan, P. Matthews, E. Shim, D. Willis, and S. Dawkins, “Concepts and Terminology for Peer to Peer SIP”, July
2008, draft-ietf-P2Psip-concepts-02 (work in progress).
16 A. Fessi, H. Niedermayer, H. Kinkelin, G. Carle: ”A Cooperative SIP Infrastructure for Highly Reliable
Telecommunication Services“, IPTComm 2007, PRINCIPLES, SYSTEMS AND APPLICATIONS OF IP.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 22 of 95

A similar, but more advanced approach was done by Morocco17. This takes IMS
and its core components into account, but also uses a P2PSIP network for
message routing. Clients, which support only the P2PSIP, can communicate
over a proxy-peer with IMS clients. Thus, this solution describes rather the
interworking of non-hybrid clients, belonging to exactly one of the interworking
schemes (IMS or P2PSIP).
An example, where the IMS location service has been used in a P2P application
is a mobile chess application, developed at the University of Aachen18. Also the
use of IMS service enablers has been proposed for Mobile-TV19.
It has already been understood, that cooperation must not only go in one
direction. As pure P2P networks lack authentication, this is one option to
enhance P2P with properties of centralistic systems. The work of Cao, Bryan
and Lowekamp introduces a group of trusted authentication servers, which
provide a login service and key management20.
One approach, which also focuses on media delivery, was a case study done by
Fraunhofer FOKUS, where they extended an existing IMS network (namely the
Open IMS Playground), with a P2P application server and an external DRM
server21. The P2P-AS had the purpose to coordinate BitTorrent swarms
(content) with DRM licenses. A Java IMS client has been modified to use
external tools to process encrypted content. The major drawback of this
solution was the fact that many components (e.g. the DRM-server) were not
fully integrated in the IMS architecture and used protocols, not standardized by
the IETF and thus no standardized reference points.
Finally, cooperation of P2P and IMS has reached the standardization bodies. At
the ETSI, a Work Item has been established for this field of technology. The
work item is titled “Peer-to-peer for content delivery for IPTV services: analysis
of mechanisms and NGN impacts”. This Work Item is going to be developed in
WG1/2 (Requirements and Architecture) but liaisons with other groups are not
discarded.

17 Enrico Marocco, "Interworking between P2PSIP Overlays and IMS Networks - Scenarios and Technical Solutions",
ICIN 2007.
18 Guido Gehlen, Fahad Aijaz, Yi Zhu, Bernhard Walke, “Mobile P2P Web ervices using SIP”, Journal Mobile
Information Systems, IOS Press, ISSN 1574-017x, Issue Volume 3, Number 3-4 / 2007, Pages 165-185.
19 Raimund Schatz, Siegfried Wagner, Norbert Jordan, "Mobile Social TV: Extending DVB-H Services with P2P-
Interaction," Digital Telecommunications, International Conference on, vol. 0, no. 0, pp. 14, Second International
Conference on Digital Telecommunications (ICDT'07), 2007.
20 Feng Cao, David A. Bryan, and Bruce B. Lowekamp, “Providing Secure Services in Peer-to-Peer Communications
Networks with Central Security Servers” Proceedings of the 2006 International Conference on Internet and Web
Applications and Services (ICIW'06), February 2006.
21 J. Fiedler, T. Magedanz, A. Menendez: “IMS secured content delivery over peer-to-peer networks”, Proceedings of
SIGMAP 2007, Spain, July 28-31, 2007, INSTICC Press, Portugal, p. 5-12, ISBN 978-989-8111-13-5.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 23 of 95

Concluding from the previous, it is obvious that IMS and P2P interworking is a
hot topic not only for academic research, but also for standardization and thus
for industry.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 24 of 95

7 Usage scenarios

7.1 Scenario 1: RBB remote
Rbb remote is a service concept that makes rbb content available to legitimate
subscribers/viewers who happen to be outside the broadcast region for a time
(travelling, studying, etc.). This extra content provision, however, must not
cause any extra costs to the broadcaster (in this case rbb), according to the
current legal regulations.

7.1.1 Content Access outside a geo-blocked area

Due to licensing policies AV Content on the internet is often geo-blocked and
thus only available in certain areas. This, however, excludes users who have
paid their broadcast licence fees but happen to be temporarily outside the
geographic area where they live.
With IMS technology, viewers can be enabled to consume content they have a
right to access wherever they are. A suitable area of application would be the
streaming AV (IPTV) offers by national public broadcasters, which could then
be made available for all rightful viewers anywhere throughout Europe.

7.1.2 Out-Of-Area content distribution

Content distribution via Internet is affordable for larger content providers
without relying on P2P services. Public broadcasters such as Germany's ZDF
offer up to 50.000 concurrent TV quality direct video streams and are ready to
scale as demand rises. Yet the service area of the public broadcasters is legally
limited to their home country. However, viewers from abroad might also be
interested in the content, e.g. because they are speaking the same language.
However, if demand from abroad rises there is no according re-financing of
distribution costs, as those viewers do not pay TV license fees to the respective
broadcaster. As a solution, broadcasters could offer direct streams only in their
own country and rely on P2P outside. This way nobody would be excluded, still
funds would be used according to the national contracts.
Technically, users would have to register via the IMS in order to get access to
the content in the appropriate way. Users might even explicitly offer their
resources to support other network users. Thus a decentralised distribution
system could develop which could even “sell” its resources to other users.

7.1.2.1 Multimedia conferencing
Modern working patterns and collaboration models dictate the necessity for
people located in different, whether close or distant, geographic sites to work
together in a manner quite similar to being in the same room. Multimedia
conferencing provides the generic solution to this need. However, restrictions

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 25 of 95

might be encountered, mainly attributable to the bandwidth available to each
of the participants in relation to the location and service provider
characteristics of the rest. In addition, conferencing places wider requirements
to the available services than mere real-time AV; whiteboarding and instant
file exchange are also needed.

7.2 Scenario 2: SoftRadio – Personalised Radio Experience

7.2.1 Mixing programmes from different sources

The VITAL++ platform may offer an opportunity for independent service
providers to bundle content from different sources in order to provide exciting
programmes for TV and radio services. Likewise users could mix their own
programme from a variety of content.

7.2.2 End user Service – The Softradio concept

Softradio is a concept that enables the users to mix their own radio
programme from a multitude of content sources (audio and video) by one or
multiple content providers. Still the most important characteristics of a
broadcast programme including a clear branding are preserved.
In rbb's case, the user would be able to choose from different mixing sources,
thereby utilising the three VITAL++ features: streaming, on demand content
and file sharing:

7.2.2.1 Streaming
• The classical linear radio programme
• Loop streams of the nightly music programmes

7.2.2.2 On Demand
• Audio content from the community platform “meinfritz.de”
• “Fritz unsigned” music content of newcomer bands from the Berlin-

Brandenburg area
• Podcast content (audio and video) such as news, comedy, etc.
• Video content from the rbb storage.

7.2.2.3 File Sharing
• Audio content (music, etc.) from own PC and from buddies’

The linear programme often follows a well-structured schedule in form of a
“radio clock” (see Figure 4), which shows fixed slots for news, sports, service,
music, etc. (see Figure 5).

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 26 of 95

Figure 4 “The Radio Clock” – an abstract hourly schedule

The user will be enabled to fill some of these slots according to his/her own
taste, while other slots will be fixed as they contain current information,
advertisements or content important for the radio branding.

With a simplified mixing feature (e.g. with faders like on any traditional mixing
device or equalizer, see below), users can define how much of which content
source or type they want to use.

 Fritz Live Stream

 30%

 Loop 1

 0%

 Loop 2

 20%

 Fritz Unsigned

 40%

 Fritz Comedy

 10%

 Buddy Music

 0%

Figure 5 VITAL++ SoftRadio Mixer

Instead of tuning out (and not tuning back in – the worst case for a
broadcaster), the user would keep the selected aspects and features of a

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 27 of 95

programme, in other words stay with the programme as his favourite brand,
and would be provided with different content during the time slots in-between
semi-automatically.
Skipping and switching to other files than those automatically recommended,
should always be possible.
As a second step and an alternative to semi-automatic recommendations
according to a user-defined profile, users should be able to mix their own
programme more exactly. Assuming, for instance, a university student
(political sciences) as user, the scenario could be depicted like this:

1. The student travels one hour to university each day and one hour back
(ignoring the fact that he would need a mobile VITAL++ capable device
for a moment). He wants to customize a programme to listen to during
this time.

2. The user chooses a linear radio programme as frame programme which
basically provides current news, traffic, weather and advertisement.
Inforadio, a news programme, would be a good choice for a student of
political sciences. The parts of this frame programme will play live every
full and half hour for approximately five minutes.

3. He is very much interested in the weekly documentary features on
Inforadio, which are available as Podcast/on-demand stream. He picks
three features – foreign politics update, science report and Berlin lifestyle
guide. Each time when a new issue becomes available, it will be the first
feature to be presented to him in the morning.

4. He likes to discover new music, so he adds “Fritz unsigned” offered by
the youth radio station, which is broadcast every Sunday, so he will be
offered this feature on Monday morning.

5. The other days he wants to listen to 15 minutes of user-generated video
content taken from the online community platform “www.meinfritz.de”,
highlights that have been picked by editors or rated very high by the
visitors of the platform.

6. In the evening he wants to watch the regional info magazine
Brandenburg aktuell, which would be streamed to him through this
service.

7. The rest of the time, he simply wants to listen to music from his personal
archive.

As mentioned above, with VITAL++ the content could be streamed (live
programme or on demand) or users could share data with their buddies, e.g.
listen to their music.
The sources to mix the individual programme from could be audio as well as
video.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 28 of 95

Through IMS any one item could be identified so as to prevent double copies of
the same file (song/broadcast, ect.) which might not be recognized by the
system and client as instances of the same file.

7.3 Scenario 3: Remote Rural Areas
In some remote rural areas, served by satellite connections or radio accesses,
the use of P2P technologies can improve the way the operator serves
multimedia on-demand content. Let’s imagine a rural area where a number of
users are connected to a broadband network using a number of satellite
accesses. For VoD scenarios is probable that the same content is going to be
forwarded at different times at several satellite accesses using a high amount
of bandwidth. This scenario can be improved if subscribers are connected to a
local area network (wired, WiFi, etc) and share a satellite access. This situation
is depicted in the following drawing (see Figure 6).

Figure 6 Remote Rural Area. VoD scenario

The network operator can improve the use of the expensive and scarce
bandwidth satellite access using a P2P approach. This approach can be a user
P2P, where a user serves contents to other users or even an operator P2P,
where every on-demand content requested by a user to the network is stored
at a local element property of the operator. In both cases, when a second

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 29 of 95

remote user asks for the same content, it is distributed from the local
broadband network, instead of using the satellite access.

Figure 7 Remote Rural Area VoD scenario. Signalling and media flows.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 30 of 95

8 Generic requirements/criteria regarding the
clients

The following section describes the rationale for and process used to evaluate
Peer-to-peer clients to determine their suitability for adaptation to meet the
requirements of the VITAL++ project.

8.1 Reason for Evaluation

The VITAL++ project is investigating the merging of Peer-to-Peer technologies
with IMS infrastructure. The resulting platform should have the scalability and
fault-tolerant features that come with a decentralised P2P architecture while
benefiting from IMS features such as strong authentication, encryption,
auditing and accounting which are necessary for commercial deployment.
However, the integration of two technologies with very different concerns and
motivations is not without its problems. IMS is realised through a collection of
well specified logical nodes with defined interfaces and interactions required to
achieve basic and advanced network functionality such as subscription,
registration, session control, roaming and access network mediation. These
nodes are centralised in a client-server architecture as, historically, they have
been owned and operated in this fashion by network operators. A P2P-IMS
involves the distribution of some of these nodes towards the edge of the
network. In a P2P-IMS content storage, media processing and transcoding are
all likely to be delegated to peer applications running on various mobile devices
or set-top boxes. These peer applications will necessarily support client
functionality required for connection to standard IMS infrastructure together
with their P2P functionality for:

• Content search
• Content retrieval and distribution using streaming
• Content mixing

Work Package 2 focuses on VITAL++ Architecture Requirements and
Specification. As part of this work package, Task 2.1 involves evaluating P2P
clients and potentially libraries to determine suitability for use in achieving
VITAL++ objectives.

From the Technical Annex:
“The main goal of this Task is to evaluate the multitude of existing Peer-to-
Peer Software Clients with special focus on their feature set. This evaluation
starts with an analysis of the usage scenarios and an examination of the client
penetration over Europe. The most popular clients are investigated and their
feature set compared amongst themselves. Special focus is set on the ability to

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 31 of 95

enhance/reuse the client software within IMS networks, the description of the
extensibility of the Client interfaces in order to communicate within the IMS
network surrounding is an integral part of the accompanying deadapted in the
course of WP3.”
As the VITAL++ platform will primarily address concerns surrounding content
distribution this implies baseline functionality within the P2P client. Therefore
we have described a set of evaluation criteria that permit us to decide upon
one or more P2P clients and libraries, which are optimal for use.

8.2 Basis for Evaluation

The identified Evaluation Criteria are listed below.

Portability

The ability of the P2P client or library to be deployed on multiple operating
systems and device types, thus ensuring that the VITAL++ platform can reach
the maximum user community.
Concerns include:

• Implementation Language
• Operating System support
• Device support

Code Accessibility

The accessibility of the code for inclusion within and modification by the
VITAL++ project. Issues that affect this include whether the code for the P2P
client or library implementation is available to the general public or the
consortium only. The license under which the code is distributed is also a factor
as some licenses are highly restrictive and/or create compatibility issues with
other 3rd party components.
Concerns include:

• Openness of Source Code
• License Model Used (e.g. BSD, GPL, APL etc.)

Scalability and Fault Tolerance

An assessment of the scalability features and fault tolerant features of the
client’s underlying P2P overlay. Any other issues of features of the client that
will affect scalability of fault tolerance may also be considered.
Concerns include:

• P2P architecture including overlay topology
• IP version

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 32 of 95

• Detection and adaptation to changing network conditions.

Suitability for modification

Analysis of the client to determine whether it’s a suitable starting point to
realise the proposed VITAL++ scenarios. In particular, the structure of the
code should be briefly examined to see that the design is intelligible and
logical. A modular design that promotes extension is best.
Concerns include:

• Modularity
• Overlay abstraction/API
• Documentation of architecture and code.

SIP & IMS Suitability

SIP in general and the IMS architecture in particular require and suggest
mechanisms for authentication, auditing and management. Here we consider
the suitability of clients for integration within an IMS environment based on
their existing design and capabilities. Any issues that could be detrimental to
their adaptability for P2P-IMS scenarios, will also be considered. We assume
client-side IMS functionality equivalent to the Rich Communications Suite
initiative requiring registration, voice and video session control, media-sharing,
contact management and presence.
Concerns include:

• AAA
• Other security concerns including Message Encryption and tamper-

proofing
• Billing
• Manageability

Scenario Specific Features

The VITAL++ project will investigate the challenges of P2P IMS using a small
number of appropriate service scenarios exercising functionality for distribution
and consumption of content in various forms. Content here will range from
basic “flat” files to live, time and sequence sensitive media streams, which are
broadcast by and received by multiple parties. Difference scenarios involving
different content types and access/distribution paradigms may require specific
features from a client or library implementation that are not covered by other
evaluation criteria.
Concerns include:

• Use of DHT;
• Support for isochronous media;

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 33 of 95

• Digital Rights Management (DRM) integration;
• Configurable content replication mechanisms;
• Anonymity of peers
• Rewards mechanism for good network etiquette and contribution;

8.3 Criteria and requirements for IMS operation
In the scope of this project, IMS functionalities shall be exploited to enrich the
users experience at the VITAL++ hybrid client. Therefore, this client needs to
be able to use the related IMS features transparently. IMS communication
mainly means to fully support the Session Initiation Protocol (SIP) in version
222. Additionally, the 3gpp has specified the exact behaviour of a client and its
use of SIP messages, methods, transactions and header fields in a
comprehensive technical specification23. In the following, the single IMS
features required by the hybrid VITAL++ client are discussed.
Open API: As many features in the hybrid VITAL++ client require the
assistance of central IMS functions, it is necessary to be able to influence the
behaviour of the SIP/IMS stack in terms of transaction and especially header
fields. E.g. it is necessary to transport DRM licenses, asymmetric encryption
keys, etc. in the body of a SIP message.
Therefore, also the use of SIP over TCP is recommended, in order to avoid
message size constrains when using UDP (a SIP message must fit into a single
UDP packet, which is not bigger than the PMTU between the peers) and
transaction timeout race conditions during cascaded P2PSIP operations, as
P2PSIP is very likely to appear as a P2P protocol.
Also, the SIP state machine needs to be capable of being influenced in order to
have the freeness to implement new transaction flows. At the moment it not
clear, which of these features are really required, as many of them are related
to question, how P2P communication and P2P/IMS-Core communication will be
done. Nevertheless, for the design or choice of an IMS/SIP stack, this is an
important point.
Recently, the JSR IMS API has been specified by the Java Community24. This
API covers just a subset of the required features, which an extension in terms
of P2P functionality might require. Therefore, the presence of this API might be
desirable, but not necessary, as additional API elements must be created.
Nevertheless, it is an interesting starting point, when a portable P2P extension
is to be created.

22 IETF RFC-3261
23 3GPP TS 24.229 V7.12.0 (06/2008)
24 http://jcp.org/en/jsr/detail?id=281

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 34 of 95

Authentication: As the client acts as a normal IMS client towards the call
state control functions, it must register with the IMS core before any further
operations can be performed. Hence, the IMS authentication scheme must be
supported.
Session Management: The IMS client must be capable of handling
multimedia sessions. I.e. to initiate, modify and terminate them using IMS
signalling.
Call referral: If the P2P management in the IMS application plane decides to
rebuild or restructure the overlay, it will most likely do this by using the SIP
REFER method in order to re-route media streams. Hence, support for this is
needed in the IMS client.
Quality of Service: QoS is one of the most important features to be
exploited. In IMS, QoS is realized by reserving bandwidth for a specific client
by the call state control logic. In order to do this correctly, the client needs to
supply its bandwidth requirements during SIP session establishment. For a
VoIP call, this is done by the VoIP call handler module above the IMS/SIP
stack. For a P2P media stream session, it must be possible to access the
IMS/SIP stack in a way which allows modifying the related parameters.
Presence: Another goal within the project is to preserve the possibility to
exchange private messages between users and to be informed when other
users become available, regardless of the relation to those users. They can be
friends, or peers with specific content, or peers for P2P request routing, etc.
The IMS presence service allows to subscribe to events and to be notified when
certain events occur. This generic mechanism will show itself useful when P2P
mechanisms need to be supported.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 35 of 95

9 P2P Clients evaluation

This Section provides an overview of the existing most-popular P2P Clients,
which are also evaluated (according to the specific usage scenario and
following the criteria defined in the previous section), prior to the selection of
the 3 most suitable ones for VITAL++.

9.1 P2P Clients for content distribution

9.1.1 Gnutella - Limewire

The LimeWire is a free open source client developed in java, which provides
access mainly to audio files, which are located in the Gnutella network. A
simplified example of how Gnutella works is a large circle were all node have
the client software. When a client connect in the circle the node software must
bootstrap and find at least one other node. Then the client will try to connect
to the nodes, as well as nodes it receives from other clients, until it reaches a
certain quota. Figure 8 and Figure 9 present the “Start-up screen” and the
“Search Interface” respectively.

Figure 8 Limewire Start-up screen

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 36 of 95

Figure 9 LimeWire Search Interface

9.1.1.1 Categories
This section evaluates LimeWire software within the categories defined in
section 8.

Portability
The LimeWire is a front end client for the Gnutella/G2 network, written in java
provides a reliable client supporting various Operating systems such us
Windows Mac OS and the ubuntu-debian Linux distributions. LimeWire is
supported by the Gnutella forum, currently they are working in implementing a
portable client for mobile devices and a client that support the bit torrent
protocol.

Code Accessibility
LimeWire is a free peer-to-peer file sharing (P2P) client written in the Java
platform, it use the Gnutella network. The Basic edition of the LimeWire is free
of charge and compared with the pro edition does not provide extensive tech
support and optimum search results. LimeWire basic edition is open source and

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 37 of 95

it is developed online providing resent revision via the subversion technology
(CVS) and it can be downloaded via the wiki LimeWire page. The LimeWire is
under the GNU General Public License (GPL).

Scalability and Fault Tolerance
Lime Wire supports Gnutella's open-protocol. The gnutella protocol is a highly
scalable protocol as described by the Gnutella Developer forum25: Gnutella
protocol distinction is its peer-to-peer, decentralized model. In this model,
every client is a server, and vice versa. These so-called Gnutella servents
perform tasks normally associated with both clients and servers. They provide
client-side interfaces through which users can issue queries and view search
results, while at the same time they also accept queries from other servents,
check for matches against their local data set, and respond with applicable
results. Due to its distributed nature, a network of servents that implements
the Gnutella protocol is highly fault-tolerant, as operation of the network will
not be interrupted if a subset of servents goes offline.
LimeWire supports IPv6

Suitability for modification
A large community supports LimeWire and the Gnutella network and it can be
a good and suitable P2P client for the implementation of P2P technology in IMS
network which is suggested by VITAL++. The help and support that Gnutella
Developer Forum can provide a valuable assistant in the deployment of an IMS
P2P LimeWire like client for the VITAL++ testbed.
The source code is available in the following are for download:

Online https://www.limewire.org/fisheye/viewrep/limecvs/
Subversion cvs -d:pserver:guest@cvs.limewire.org:/cvs login
The code appears to be clearly laid out with a well structure and well
documented .

SIP & IMS Suitability
• AAA: The LimeWire support Host that are located via the IP address and

there is a module that Hosts can communicate but not AAA modules are
available by the Gnutella Protocol.

• Other security concerns including Message Encryption and tamper-
proofing: LimeWire use Ultrapeer, Mojito DHT and TLS. LimeWire uses
the Mojito Distributed Hash Table (DHT) to find more sources for
downloads. Also, it support TLS

25 http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 38 of 95

• Billing: This is not a feature of the Gnutella protocol..
• Manageability: This is not a feature of the Gnutella protocol.

Scenario Specific Features

• Use of DHT: DHT stands for Distributed Hash Table. LimeWire use Mojito
Distributed Hash Table To explain how the DHT works we take O(log N)
hops, where N is the network size. Assuming each hop takes t
milliseconds, then a search should take O(log N)*t (or O(log N))
milliseconds. Although the search delays grow with the network size, the
growth is really slow. In addition, in theory, without increasing the
network bandwidth cost much, the search time could be improved to C*t
with proper optimizations, where C is a constant. This means, although
the number of hops grow with the network size, the search delays do not
grow. LimeWire use a modified kademlia implementation named Mojito
Distributed Hash.

Figure 10 Mojito Distributed Hash table Ping Sequence

• Support for isochronous media: This is a feature not supported by the
LimeWire client.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 39 of 95

• Digital Rights Management (DRM) integration: Lime Wire is introducing a
filtering system to encourage safer, more responsible file sharing.
Copyright owners interested in blocking their files from being
downloaded, uploaded and shared are invited to register with LimeWire
community. LimeWire users can learn more about responsible file sharing
in Copyright Information that is provided online.

• Configurable content replication mechanisms: LimeWire is a gateway to
the Gnutella network. Like other Gnutella-compatible software programs,
LimeWire allows individual computers to connect and to search other
computers on the Gnutella Network. When a file is been found it can be
downloaded directly from the computer that holds it.

9.1.1.2 Concluding remarks
LimeWire is a fast, user friendly file sharing program that provides no
anonymity to the user. LimeWire is opensource under GNU/GPL providing a big
community to the developers. LimeWire is developed in java and a large
developer’s community supports it. Limewire is a file sharing application that
does not support the ability to stream video or audio. Finally Lime Wire is
introducing a filtering system to encourage safer, more responsible file sharing
providing a notion of DRM.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 40 of 95

9.1.2 Cabos

Cabos is an open source Gnutella file sharing program based on LimeWire and
Acquisition. Cabos provides a user friendly environment with the ability to
transfer via firewall, proxy’s etc. Figure 11, Figure 12 and Figure 13 present the
Cabos’ network selection, the preferences menu and the download/file-sharing
section respectively.

Figure 11 Cabos network selection

Figure 12 Cabos Preference

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 41 of 95

Figure 13 Cabos File sharing

9.1.2.1 Categories
This section evaluates CABOS software within the criteria defined in section 8.

Portability
The Cabos is a front-end client for the Gnutella/G2 network, Cabos is based on
LimeWire and Acquisition. Cabos supports only Windows and Mac OS platform.
The community of Cabos is based in Japan. Cabos use the Realbasic for its
GUI, Realbasic is creating a cross platform for supporting mobile devises but
until now Cabos network is not implementing any client that will support
mobile devices.

Code Accessibility
Cabos is a free peer-to-peer file sharing (P2P) client the core application is
written in java and the Gui in REALbasic. Cabos is under the GNU General
Public License(GPL) the community is based in Japan and the source code can
be found in the Japan source forge under the name CABOS.

Scalability and Fault Tolerance
Cabos supports Gnutella's open-protocol such us LimeWire but it lacks the chat
and library features found in LimeWire. Cabos based can be highly scalable and
resist in fault tolerance because is based in Gnutella protocol.

Suitability for modification
Cabos is based in japan and it has a medium size developer’s community it is
not supported by the Gnutella network. Cabos use REALbasic for the Gui which
is not a popular language and there are not many applications created by
REALbasic.
The source code is available in the Japan sourceforge:

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 42 of 95

Subversion http://svn.sourceforge.jp/cgi-bin/viewcvs.cgi/?root=cabos
The source code appears to be clearly laid out but it is poorly documented.

SIP & IMS Suitability
• AAA: The Cabos does not support any lever of AAA.
• Other security concerns including Message Encryption and tamper-

proofing: Cabos is based in LimeWire it use also Ultrapeer, Mojito DHT or
TLS.

• Billing: The Cabos does not support billing.
• Manageability: This is not a feature of the Gnutella protocol.

Scenario Specific Features

• Use of DHT: Same as Limewire
• Support for isochronous media: This is a feature not supported by the

Cabos client
• Digital Rights Management (DRM) integration: Same as Limewire.

Configurable content replication mechanisms: Same as Limewire

9.1.2.2 Concluding remarks
Cabos seems unsuitable for VITAL++ project, mainly to its inability for
supporting SIP and IMS functions/operations.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 43 of 95

9.2 P2P Clients for VoD

9.2.1 Azureus (Vuze)

Azureus is a BitTorrent client written in Java and operating system
independent. Vuze allows users to view, publish and share original DVD and
HD quality video content. Content is presented through channels and
categories containing TV shows, music videos, movies, video games and
others. Additionally, if users prefer to publish their original content the just
upload it to the Vuze search engine.

Figure 14 Video selection

Figure 15 Download of a video

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 44 of 95

9.2.1.1 Categories

This section evaluates Vuze software within the following categories, these
categories are defined in the section above in general terms.

Portability
Portability can be seen from different perspectives e.g. operating system,
programming language, processor, devices adaptation, access to I/O devices
and network resources. Vuze is mostly written in java programming language,
which makes it portable across various platforms (Windows, Mac OS X,
Unix/Linux). There is no version of Vuze confirmed to be installed on mobile
phone or hand held devices. However since it is written in java it may be
relatively portable to a mobile device supporting the J2ME Connected Device
Configuration.

Code Accessibility
Vuze is commercial software, which uses the open source Azureus client
engine. The original Azureus up till version 2.5.0.4 was available under the
GNU General public License (GPL). After the version 3 distribution the licence
is changed, while it still states that Azureus application is available under the
GPL but after the completion of installation it requires the user to agree to the
terms of “Vuze platform” which include restriction on use, reverse-engineering
and sublicensing. The source code of Vuze software is available via
sourceforge repository under the module named Azureus263.

Scalability and Fault Tolerance
Vuze maintains its own DHT, which is incompatible with the official BitTorrent
clients offered by BitTorrent, Inc. However for the compatibility purpose an
implementation of the original BitTorrent DHT is available as plug-in.
A BitTorrent tracker is a server, which helps the communication between the
peers using the BitTorrent protocol. It is a major critical point in the absence of
the extensions to the original protocol as clients have to communicate with the
tracker to initiate the download.
The concept of peer exchange has been introduced in Azureus 2.3.0.0. The
peer exchange (PEX) help to reduce load on trackers and the distributed
database. Peers only need them as an initial source of peers and then depend
on the peers supporting PEX. However they report back to tracker as well but
after max-interval thus reducing the load. This exchange is managed through
the Azureus messaging protocol.

26 Vuze Licence
http://www.azureuswiki.com/index.php/Azureus_2_/_3_and_Vuze#Is_the_source_for_Vuze_available.3F

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 45 of 95

Azureus supports IPv6 on Unix/Linux and Mac OS X, however IPV6 support on
windows is not yet available27.

Suitability for modification
Vuze could be a good and suitable starting point for a P2P implementation in
IMS network which is suggested by VITAL++ as the Azureus engine is open
source software distributed under GNU/GPL. Its structure is can be subdivided
into:

• Azureus core + Standard 'SWT' UI:
http://azureus.cvs.sourceforge.net/azureus/azureus2/

• Vuze UI: http://azureus.cvs.sourceforge.net/azureus/azureus3/
• Console UI: http://azureus.cvs.sourceforge.net/azureus/uis

The code appears to be clearly laid out but the client does not specify a
platform API, as such. However, we feel that suitable abstractions could be
implemented on top of the existing codebase.

SIP & IMS Suitability
• AAA: The Authentication model currently implemented by Vuze involves

an authenticating server, rather than true distributed authentication
models such as SPKI. A centralised authentication architecture is suitable
for IMS integration. BitTorrent generates the tracker log that can be used
as an audit trail. Tamper proofing mechanisms could be introduced if log
files are to be used for non-repudiation.

• Other security concerns including Message Encryption and tamper-
proofing: Torrent files and pieces are checksummed using the one-way
Sha1 hash. However, the concept of using PKI for digitally signing
content was not envisaged by the BitTorrent creators. BitTorrent
encryption has primarily evolved out of a desire to obfuscate BitTorrent
traffic, thus reducing ISP’s ability to filter or throttle it. It is not intended
to provide anonymity or confidentiality. VUZE supports the latest (early
2006) Protocol Encryption (PE) specification for BitTorrent header and
message encryption

• Billing: This is not a feature of the BitTorrent protocol but it may be
added to client in order to retrieve downloadable torrents.

• Manageability: This is not a feature of the BitTorrent protocol.

27 http://www.sixxs.net/tools/tracker/clients

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 46 of 95

Scenario Specific Features
• Use of DHT: DHT stands for Distributed Hash Table. In Vuze the

distributed database is based on a UDP based DHT. In fact Azureus uses
a modified kademlia implementation. DHT based on the SHA-1 hash of
the node’s IP/Port combination and support 4 basic operation

o Ping – to ensure up to date routing tables.
o Lookup node – to find nodes that are near to the desired key in the

key space
o Get value – store a single value or a list ofvalues on these nodes

• Support for isochronous media: Technically it is possible to broadcast live
streaming using the bit torrent protocol. Although this feature is not
implemented in Vuze but this is demonstrated in swarm player that
modifies the piece-picking and upload policies of bittorrent28. This gives
us fair idea that we can incorporate live streaming using bit torrent.

• Digital Rights Management (DRM) integration: This aspect it very crucial
in P2P networks, Vuze has a strong emphasis on community; users are
able to create channels for content, rate and have conversation around
the content. This is another strong feature of Vuze that allows a user to
create a social network. Producers can upload their original works and
can even charge a download or rental fee. User can not share DRM’d
data or content that he has purchased or rented on Vuze29.

• Configurable content replication mechanisms: The Vuze node distributing
a data file treats the file as a number of identically-sized pieces,
typically between 64 kB and 4 MB each. The peer creates a checksum for
each piece, using the SHA1 hashing algorithm, and records it in the
torrent file. Pieces with sizes greater than 512 kB will reduce the size of
a torrent file for a very large payload, but is claimed to reduce the
efficiency of the protocol. When another peer later receives a particular
piece, the checksum of the piece is compared to the recorded checksum
to test that the piece is error-free.Vuze distributes content as torrent
files which contain the address of the tracker server and the hash
Identifier for the torrent. The group of nodes that are active on a single
torrent are known as a swarm. A tracker server contains the information
needed for peers to connect to other peers. Trackers coordinate the
BitTorrent clients, and also keep track of statistics and verification
information for each torrent. Azureus contains its own built-in tracker,
but there are a variety of other tracker software packages in use.

28 Tribler, http://www.tribler.org/LiveStreamingBeta
29 Vuze DRM http://faq.vuze.com/?View=entry&EntryID=231

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 47 of 95

BitTorrent nodes fall into 2 categories:
1. Peers
2. Seeds.

Seed nodes have 100% of the torrent and upload to other peers. In BitTorrent
the term seed is also used as a verb, as in "I'm going to be seeding this file
overnight", meaning leave open and available for other users to download.
Usually, a person with the whole file is a 'seed', while someone with a partial
amount is a peer. BitTorrent will try to balance the amount of seeds it
connects to in a swarm with the number of peers.

Peers are nodes, which upload as well as download data for a torrent. i.e.
they’re sharing data as well as receiving it.

• Anonymity of peers: There is no built in mechanism provided by Azureus
to keep peers anonymous however this functionality can be included with
the help of a NodeZilla plug-in.

• Rewards mechanism for good network etiquette and contribution:
BitTorrent also rewards peers, which contribute resources to the network
through a process known as choking. Choking is a signal that a peer is
not intending to send you any data, until you are unchoked. This could
be because the peer is not ready, or willing to fulfill your requests. When
you are connected to a peer, the connection contains information on 2
situations,

1. choked or unchoked,
2. interested or not interested.

Interested means, that peer maintain data that you do not have, and wish to
acquire. New connections to peers always begin as choked and not interested.
Peers will unchoke connected peers who upload fast but are not interested. If
the fast uploading peers subsequently become interested, then the worst up-
loader gets choked. If you are interested in what the peer has, then that peer's
client will calculate whether to send you the data, using information such as
how fast you are uploading to other peers. When you are connected to many
peers, it is statistically improbable that you will receive data from all of them at
once. Sometimes data is sent to you from a particular peer, sometimes that
peer sends to another peer instead, who may then upload to you.
It is not possible for every peer to share data with every other connected peer
at the same time. The TCP-Protocol used in BitTorrent to connect to other
peers gets easily congested, and performs badly when sharing data over many
connections at once. So choking is used to limit that congestion, and to help
make sharing faster. Choking is also used to make sharing fairer to all, by

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 48 of 95

ensuring that peers who upload more data faster to others get more data
uploaded to them.

9.2.1.2 Concluding remarks
The Vuze P2P client is based on the open source Azureus Java client making it
highly portable. It uses an up-to-date implementation of the BitTorrent
protocol with support for message and header encryption. It uses Peer
Exchange Protocol to improve fault tolerance and scalability. This is
configurable permitting centralised tracking of streams where the publisher
wishes. Vuze uses a central server for authentication. This has drawbacks in
terms of fault tolerance but arguably eases IMS integration. Node IP addresses
are not anomymised which lends itself to the content geoblocking scenario.
Vuze is not designed to support multimedia conferencing scenarios nor does it
support live streaming. The Azureus client has a plugin-architecture with free
plugins available for SMS notification, RSS channel creation and download etc.
Allowing users to create content channels is appropriate for the Personal Radio
scenario. Azureus uses a "virtual positioning system" called Vivaldi to optimise
communications between peers based on statistics such as network ping times.
This may be useful in realising the remote rural access scenario. It appears to
be highly suitable for the development of file distribution and Video-on-
Demand applications.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 49 of 95

9.2.2 Miro

Miro formerly known as ‘Democracy Player’ is an opens source platform
created by a non-profit organization named participatory culture foundation.
Miro is a desktop video application designed to make mass media more open
and accessible for everyone. Miro is based on python with platform specific
frontends for Windows, OS X, and GTK/X11. Miro aims to make online video
“as easy as watching TV”; while at the same time ensuring that the new
medium remains accessible to everyone, through its support for open
standards.

Figure 16 Miro preferences

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 50 of 95

Figure 17 Default interface of Miro Player

Figure 18 Downloading of Video

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 51 of 95

9.2.2.1 Categories

This section evaluates MIRO software within the following categories, these
categories are defined in the section 8 in general terms.

Portability
Miro is highly portable application it supports Windows, Mac , Linux platform
providing the necessary support and documentation. The Participatory Culture
Foundation creates the Miro player and they provide help and assistant to
developers that they want to contribute in the development of MIRO. Currently
there is no support for creating a mobile MIRO client.

Code Accessibility
Miro is a free open-source desktop video application that is designed to make
mass media more open and accessible for everyone. The majority of the Miro
code is cross platform Python with platform specific frontends for Windows, OS
X, and GTK/X11. The core of the GUI is written in cross platform HTML. Miro is
available under the GPL and is built on top of excellent open-source project
such us RSS, BitTorrent, HTTP, HTML, and CSS providing the ability to create a
level playing field. The source codes is well documented and the client is well
supported by the community of Participatory Culture Foundation.

Scalability and Fault Tolerance
Miro use the BitTornado technology the 3.x branch of BitTorrent inc, Miro
initially was using the BitTorrent technology but after they change the license
they follow the BitTornado approach. Miro employs RSS (Really Simple
Syndication) technology to keep users up-to-date on their favourite video
casts. Miro with IPv6 support is not yet available.

Suitability for modification
Miro is well documented and provide an extensive documentation of the source
code the use of python provides a stable client and it can be a starting point
for the deployment of a P2P implantation in the VITAL++ IMS network testbed.
The developers of Miro have created a web page for helping all the volunteers
that developed Miro.
The source code and the developers webpage can be found:
Subversion repository svn co https://svn.participatoryculture.org/svn/dtv/trunk/tv
The code appears to be clearly laid out with a lot of programming comments
helping in the creation of a Miro Based application.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 52 of 95

SIP & IMS Suitability
• AAA: The Authentication model currently implemented by Miro involves

the creation of channels rather than true distributed authentication
models such as this used in IMS network.

• Other security concerns including Message Encryption and tamper-
proofing: Torrent files and pieces are checksummed using the one-way
Sha1 hash.

• Billing: This is not a feature of the BitTorrent protocol but it may be
added to client in order to retrieve downloadable torrents.

• Manageability: The use of RSS provides the ability to manage the
content provided by the Miro application.

 Scenario Specific Features

• Use of DHT: DHT stands for Distributed Hash Table. In Miro the
distributed database is based on a UDP based DHT. In fact Miro uses the
kademlia implementation supporting the folowing 4 basic operation.

o PING - used to verify that a node is still alive.
o STORE - Stores a (key, value) pair in one node.
o FIND_NODE - The recipient of the request will return the k nodes

in his own buckets that are the closest ones to the requested key.
o FIND_VALUE - as FIND_NODE, but if the recipient of the request

has the requested key in its store, it will return the corresponding
value.

• Support for isochronous media: Although Miro advertise that it is
Internet tv the video must be download before they are been watched.

• Digital Rights Management (DRM) integration: Miro main success is that
the video that are being shared among the users are created by the
authors providing the ability to the users to rate the content and create
comments. Producers can upload their original works but they are not
able to charge fees.

• Configurable content replication mechanisms: From Miro webpage:”Miro
is specifically designed to give video creators and viewers more freedom.
We've built Miro to work with as many video hosting sites and video
search engines as possible.” Miro creates a RSS feed that consist of any
media that users provide providing access to many blogs and video
sharing services.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 53 of 95

9.2.2.2 Concluding remarks
A major drawback of Miro is that it requires the video to be completely
downloaded, before starting playing it. Miro can be a starting point for
conveying P2P technology with IMS for the creation of a VITAL++ Client.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 54 of 95

9.3 P2P Clients for live streaming
In this chapter we try to focus real P2P client implementations and products
and not to current research algorithms or systems that are in progress in P2P
live steaming. As we have observed through our market research most
widespread and functional clients for live video streaming are proprietary. Due
to this reason their analytical evaluation and their use in VITAL++ is infeasible.
Although it is important to briefly describe these clients analyze their status,
their architecture and their performance in order to be in position to obtain the
critical decisions for the architecture and progress of VITAL++. After the
presentation of P2P clients for live video streaming we describe some non
proprietary clients that deliver other live streaming services (radio, web
conferencing etc.) through a P2P architecture and we evaluate them.

9.3.1 CoolStreaming

CoolStreaming is a P2PTV (peer-to-peer television) technology that enables
users to share television content with each other over the Internet. The
technology behind CoolStreaming is similar to that of BitTorrent. The viewers
upload content at the same time the programs are downloaded and viewed.
CoolStreaming creates a local stream on localhost and that stream is then read
by Windows Media Player, Real Player or other media players. The original
coolstreaming code is developed with Python 2.3 on Windows. CoolStreaming
is the base technology for Roxbeam Corp., which launched live IPTV programs
jointly with Yahoo Japan in October 2006.
Coolstreaming is a pioneering work towards the design of P2P live video
streaming systems. Designers describe30 the way that users exchange blocks
and they define an architecture for these systems, and present31,32 the
algorithms for the two major components of such a system. These are:

1. The overlay where is defined the graph that connects the participating
nodes and determines the set of nodes that each client uses to exchange
video blocks.

2. The scheduler that determines the algorithm that selects the appropriate
node and the appropriate block for transmission.

30 Xinyan Zhang; Jiangchuan Liu; Bo Li; Yum, Y.-S.P.;CoolStreaming/DONet: a data-driven overlay network for peer-
to-peer live media streaming, INFOCOM 2005.
31 Bo Li; Susu Xie; Keung, G.Y.; Jiangchuan Liu; Stoica, I.; Hui Zhang; Xinyan Zhang;An Empirical Study of the
Coolstreaming+ System Selected Areas in Communications, IEEE Journal on
32 Coolstreaming: Design, Theory, and Practice Susu Xie; Bo Li; Keung, G.Y.; Xinyan Zhang;Multimedia, IEEE
Transactions on

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 55 of 95

9.3.1.1 Concluding remarks

Through their experience they observe that (1) the churn is the most critical
factor that affects the overall performance of the system, and (2) there is a
highly skew resource distribution in P2P streaming systems, which has
significant impact on resource allocation. They present solutions to deal with
these challenges. Additionally they highlight that excessive start-up time and
high failure rates during flash crowd, are two of the main challenges any
streaming system needs to address.

9.3.2 TVUPlayer

This software is a product of TVU Networks Corporation an Internet company
that operates an Internet television broadcasting network that uses P2PTV
technology to offer its broadcasters global reach and low costs. Founded in
2005, the company is based in Mountain View, California.
The source code of the player as a product of a company is not available and
so we are unable to use it in VITAL++. On the other hand company announces
that with the use of its system the broadcaster is able to deliver a lot of useful
services:

• The bandwidth required to broadcast doesn't increase with the number of
viewers, this technology allows TVU broadcasters to achieve massively
lower broadcast costs

• It offers broadcasters opportunities denied to them by the limitations of
cable and satellite infrastructure. Local broadcasters become global
broadcasters; new channels can find a broadcast slot; and bigger
broadcasters can create new channels to showcase content that they
own but don't have space to broadcast on their existing channels.

• TVU networks' monetization tools allow broadcasters to create
subscription channels, pay-per-view events, or advertising-supported
channels.

• Content rights management tools allow broadcasters to limit their
coverage to specific regions.

• company's TVUAds personalized advertising engine enables seamless in-
stream advertising that is targeted to viewers based on their
demographics and geographies

9.3.2.1 Concluding remarks

In order to conclude we mention that TVU presents the features that its
application claims that offers. These features clarify the motivation towards
P2P live streaming and additionally highlights the need for a central
management and security services that IMS is able to offer.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 56 of 95

9.3.3 Peercast

PeerCast.org was established in April 2002 as a non-profit site providing free
P2P radio software. The aim of the project was to create an easy to use, simple
and reliable software client that enables anyone to broadcast streaming media
on the Internet without the need for expensive servers or bandwidth. PeerCast
can serve streams directly to any media player. That means that it can be used
in place of a Shoutcast/Icecast server to provide both direct and P2P streaming
at the same time. The use of C++ for the creation of application makes
Peercast an Operating system independent application. The user interface (see
Figure 19) of the software is based on webpage creating an easy to use user
interface.

Figure 19 Peercast Webpage

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 57 of 95

Figure 20 Peercast Preference

9.3.3.1 Categories

This section evaluates PeerCast software within the criteria defined above in
section 8.

Portability
The PeerCast use P2P technology in order to provide users of the internet to
become a broadcaster in that way the traditional costly streaming server are
not used and every users shares the radio station that he creates. PeerCast
support MS-windows, MAC and LINUX operating systems, there is no mobile
client but the use c++ can be the core for a GUI that will be supported from
mobile systems.

Code Accessibility
PeerCast is a free peer-to-peer file sharing (P2P) client written in C++. It is
under the GNU General Public License(GPL). PeerCast community supports the
distribution of modifies clients under the GPL but for commercial use it asks for
buing a commercial license.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 58 of 95

Scalability and Fault Tolerance
PeerCast is a P2P client that utilizes pure P2P in PeerCast network each user
can be a client, server or broadcaster of streams. More extensive PeerCast use
the single-tree approach for the creation of multicast distribution creating
applicative-layer overlay networks. An example of how PeerCast is like a tree
were node are organized as leaves, branches etc. So every branch provide to
the leaves the service directly. The node joining and departure strategies used
in PeerCast is simple. Node joining request services from the root node A. If A
has resources, it will provide service for the node requesting the service and he
will provide directly; otherwise, it will redirect.
The same process will be done until the leave will take the service from a
branch. Since each node/leave maintains the information of its branch and the
leaves that it have an unbalanced tree is constructed. PeerCast has the
drawback that when relay is lost the peers that are below of that branch might
lose their connection to the stream and must reconnect to another relay
potentially causing a skip or repeat in the stream. The mechanisms that are
used for the resistance in fault tolerense are random selection, round-robin
selection, smart selection according to physical placement, and smart selection
according to bandwidth. PeerCast does not support IPv6

Suitability for modification
PeerCast is by a single developer and the latest release is dated 17 December
2007. The source code is available in the following area for download:
Subversion: svn://peercast.org/peercast/trunk
The code appears to be clearly laid out with a well structure and well
documented.

SIP & IMS Suitability
• AAA :No AAA support
• Other security concerns including Message Encryption and tamper-

proofing:No encryption
• Billing: No billing schemes
• Manageability: Peercast support Channel and webpage that contains

information about the available channels.

Scenario Specific Features
• Use of DHT: PeerCast use Tree overlay network approach
• Support for isochronous media: It support the broadcasting of live audio

streams. An extension is needed for supporting video. Sip technology not
supported by the PeerCast.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 59 of 95

• Digital Rights Management (DRM) integration: The channels that are
broadcasted are not aware of the Digital Rights Management of the
music that they are streaming.

• Configurable content replication mechanisms: The use of channel provide
in a way content replication mechanisms.

9.3.3.2 Concluding remarks
In PeerCast network each user can be a client, server or broadcaster of
streams, by creating application-layer overlay networks. The exploitation of
C++ can be the core for a GUI that will be supported from mobile clients.
However, the use of the single-tree approach makes it unsuitable for VITAL++.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 60 of 95

9.3.4 VMukti - Free VoIP Web Conferencing

Vmukti is a multi-point unified communications, collaboration and conferencing
server platform. Its core features include audio, video, chat, file search,
whiteboard, file-sharing, presentation, remote monitoring, controlling, sharing,
CRM and reports. In the figure below (see Figure 21) the Vmukti client is
presented.

Figure 21 Vmukti Chat service

9.3.4.1 Categories

The evaluation of VMukti Free VoIP Web Conferencing application is presented
in this section. The criteria for the evaluation of the application were described
in section 8.

Portability
Vmukti is an open source project that interconnects WEB2.0, P2P technology
and telecom operators in an application that provides data video and audio

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 61 of 95

exchange in one portable application. Vmukti supports only Windows Operating
Systems. Vmukti support mobile devices33.

Code Accessibility
Vmukti is in the top 25 ranking on Sourceforge it is under the GNU General
public License (GPL). Vmukti is written in C#.net and is available online from
the sourceforge currently there is a stable, an unstable and full source code
version available for downloading.

Scalability and Fault Tolerance
VMukti use NetPeerTcpBinding Class created from Microsoft inside the .NET 3
frameworks. The use of centralized servers create a secure and reliable
network that is resistance and scalable. Vmukti has full supports for IPv6.

Suitability for modification
Vmukti is the first application that converge Web 2.0, P2P technology and
telecom world in a unified client that provide a good and reliable client that can
constitute the starting point for creating a converged client for an IMS P2P
network. The source code is available online:

• http://vmukti.svn.sourceforge.net/viewvc/vmukti/
The code appears to be clearly laid out but it lacks of programming comments
on the other hand there is a lot of documentation in:

• http://www.codeplex.com/vmukti

SIP & IMS Suitability
• AAA: The Authentication model currently implemented by Vmukti

depends in the creation of Bootstrap Nodes. This bootstrap nodes act as
a login server for the users providing the starting point for the Vmukti
P2P network. This centralized approach can act as a bridge towards the
creation of an IMS P2P environment.

• Other security concerns including Message Encryption and tamper-
proofing: The use of HTTPS protocol provides a reliable interface for the
Vmukti client.

• Billing: Vmukti does not support this feature but the use of centralized
server with SQL features can help in the deployment of billing service.

• Manageability: Vmukti use centralized Bootstrap nodes providing
manageability to the users.

33 http://www.vmukti.com/main-content/university.html

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 62 of 95

Scenario Specific Features
• Use of DHT: Vmukti use NetPeerTcpBinding from the .NET framework.
• Support for isochronous media: The ability of Vmukti to combine data,

audio and video in real time create a powerful client supporting
isochronous media.

• Digital Rights Management (DRM) integration: Vmukti is a service for
video/audio calling so DRM integration is not applicable

• Configurable content replication mechanisms: VMukti consists of 3 main
entities:

o Bootstrap Node
o Supernode
o Node

Bootstrap Node
The Bootstrap Nodes in the Vmukti P2P architecture acts as a central
communication point for the clients of the Vmukti network. Bootstrap
nodes depend from the hardware of the computer, the node act as a
login server, a Database server, a Web Server and Soft PBX.
Whenever new computer connects to the Bootstrap, Bootstrap decides
the type of entity for that node (computer). Bootstrap also acts as a
Supernode and a Node.

Functions for Bootstrap are as follows34:
1. Login server information management
2. Web server information management
3. Supernode assignment
4. Works as a Super node (services management mention bellow)
5. Works as a Node

Supernode
Supernode is an entity that works as the network relay and proxy server
handling the data flow and connections for other users. Supernodes are
established automatically by the Bootstrap based on the current network
traffic and the capabilities of the user’s machine. Users don’t h the
control whether their machines become Supernodes.
A Supernode may optionally alter the client’s request or the Supernode’s
response and may serve the request without contacting the specified
Supernode. In this case, it would cache the first request to the remote

34 WhitePaper - Entities of VMukti

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 63 of 95

server, so it could save the information for later and make everything as
fast as possible. A Supernode can serve the requests of the clients
without even contacting the specified Supernode, i.e. by retrieving
content from the previous saved request made by the same client or
even other clients. This is called caching. Supernode locally keeps the
copies of frequently requested resources, allowing the VMukti
architecture to significantly reduce the upstream bandwidth usage and
cost, and increase the performance.
Functions for Supernode are as follows35:
1. Node listing and management
2. IPv6, P2P or Http service hosting
3. Message passing between two nodes
4. Dummy client management for Http nodes
5. PBX service management
6. Works as a Node

Node
Every client machine (computer) in the Vmukti network is a node, the
node computers typically sends/receives the data from/to
requested/required Node. It is also known as communication end-point.
The type of the Node is decided based on its characteristics.
• Node with IPv6
• Node with P2P
• Node with Http

9.3.4.2 Concluding remarks
Vmukti is the first application that converge Web 2.0, P2P technology and
telecom world in a unified client. The major drawback of Vmukti is that it
supports only MS Windows-like systems.

35 WhitePaper - Entities of VMukti

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 64 of 95

9.3.5 DistribuStream

DistribuStream is open source software that implements the Peer Distributed
Transfer Protocol (PDTP), a peer-to-peer transfer protocol which utilizes
segmented downloading and provides progressive download. Files are received
in order and can be consumed for purposes like media playback even as the
file is transferring. By using a P2P approach, DistribuStream is able to
dramatically reduce the cost of streaming media by partially offloading the
required bandwidth onto clients transferring files. This makes it similar to
protocols like BitTorrent but unlike BitTorrent, DistribuStream facilitates
streaming progressive downloads, making it an open alternative to proprietary
protocols like Joost.
The figures below depict a real DistribuStream server running and a client
downloading a file from the server.

Figure 22 DistribuStream Server

Figure 23 DistribuStream statistics Webpage

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 65 of 95

9.3.5.1 Categories

This section evaluates DistribuStream software within the criteria defined
above in section 8.

Portability
DistribuStream is a cross platform application that supports Ms-Windows Mac
Linux platforms. There is no client for mobile devises.

Code Accessibility
Distribustream is under the GNU General public License (GPL).

Scalability and Fault Tolerance
Unlike BitTorrent, DistribuStream facilitates streaming progressive downloads,
making it an open alternative to proprietary protocols like Joost.
DistribuStream is written on top of the Ruby/EventMachine library which allows
thousands of concurrent connections.

Suitability for modification
ClickCaster, Inc. and the University of Colorado Computer Science department
developed DistribuStream. All source code is available under the GNU General
Public License v3.
 http://distribustream.rubyforge.org/svn
The code appears to be clearly laid out with programming notes that support of
further developing the application.

SIP & IMS Suitability
• AAA: No authentication model but there is web based application

monitoring that it can support user profiles
• Other security concerns including Message Encryption and tamper-

proofing: No encryption
• Billing: This is not a feature of the BitTorrent protocol but it may be

added to client in order to retrieve downloadable torrents.
• Manageability: This is not a feature of the BitTorrent protocol.

Scenario Specific Features
• Use of DHT: DistibuStream relies on emergent, swarm-like behaviour for

traffic scheduling.
• Support for isochronous media: The protocol is philosophically different

from BitTorrent relying on traffic scheduling. All client/server and peer-
to-peer communications are modelled as simple state machines. The

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 66 of 95

bonus of traffic scheduling is placed entirely on the server. Client/server
communication is accomplished with a lightweight TCP, JSON
asynchronous messaging format. Peer-to-peer communication is
accomplished with HTTP/1.1 using the Mongrel HTTP server. The entire
protocol behaves as an ad hoc HTTP caching proxy network.

• Digital Rights Management (DRM) integration: The DRM is not supported
by DistibuStream.

• Configurable content replication mechanisms: DistribuStream utilizes
segmented downloading and provides progressive downloads. Files are
received in order and can be consumed for purposes like media playback
even as the file is transferring creating a live streaming Peer to Peer
server.

9.3.5.2 Concluding remarks
DistribuStream is open source software that implements the Peer Distributed
Transfer Protocol (PDTP), which utilizes segmented downloading and provides
progressive download. By using a P2P approach, DistribuStream is able to
dramatically reduce the cost of streaming media by partially offloading the
required bandwidth onto clients transferring files. This makes it similar to
protocols like BitTorrent but unlike BitTorrent, DistribuStream facilitates
streaming progressive downloads, making it an open alternative to proprietary
protocols like Joost. The DistribuStream use c++ and it support all operating
systems. Distribustream is not suitable for VITAL++, as long as the
modifications required for the collaboration of P2P and IMS technologies, are
not supported/allowed.

9.3.6 Split Stream

SplitStream is a multicast system distributed as part of FreePastry which was
developed and introduced by Microsoft Research (UK), Rice University,
(Houston, TX) and Max Planck Institute for Software Systems (Saarbrücken,
DE).
The available publications are from 2003. The current release (2.0_04),
however, was published in May 2008.
Unfortunately, through the available publications it did not become clear which
of the three institutions was involved in which ways and how much.
Furthermore, all available publications were either published by the developers
themselves or largely based on these publications. External evaluations or
experience reports could not be found.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 67 of 95

According to the developers, “SplitStream provides a generic infrastructure for
high-bandwidth content distribution. Any application that uses SplitStream
controls how the content it distributes is encoded and divided into stripes.
SplitStream constructs the multicast trees for the stripes while adhering to the
inbound and outbound bandwidth constraints of the nodes. Applications need
to (i) encode the content such that each stripe requires approximately the
same bandwidth; (ii) ensure that each stripe contains approximately the same
amount of information and there is no hierarchy among stripes; and (iii)
provide mechanisms to tolerate the intermittent loss of a subset of the
stripes.”36
The core message here seems to be that SplitStream is not actually a client
but “provides an infrastructure” for streaming and can be used by other
applications for exactly this purpose.
SplitStream is largely based or built upon Pastry, a scalable, self-organizing,
structured P2P overlay network (see Routing), and Scribe, a scalable
application-level multicast system based on Pastry.
SplitStream is strictly focused on splitting files for streaming. It does not seem
to have any other features relevant to VITAL++.
Further disadvantages were not reported. This may be due to the fact that all
available publications were provided by authors involved in the development of
the system.

9.3.6.1 Categories
Portability
As SplitStream is written in Java it can potentially be ported to various
platforms, such as mobile phones or interactive TV, etc.

Code Accessibility
SplitStream is part of the FreePastry Open Source distribution, which is part
of Pastry.37 However, it seems that Pastry and FreePastry are not yet fully
developed, let alone robust or fully secure!
“The initial release of FreePastry is intended primarily as a tool that allows
interested parties to evaluate Pastry, to perform further research and
development in P2P substrates, and as a platform for the development of
applications. Plans for later releases are to provide a robust, fully secure
implementation that is suitable for a full-scale deployment in the Internet.”
(Source: http://freepastry.rice.edu/FreePastry/download.html).

36 Castro et al (IPTPS, Feb 2003)
37 Available at http://freepastry.rice.edu/FreePastry/download.html

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 68 of 95

There are documentation files and a tutorial for introduction available at
http://freepastry.rice.edu/FreePastry/download.html as part of the FreePastry
download package.

Scalability and Fault Tolerance
According to the developers, SplitStream was developed to cater for big and
growing peer communities
Forwarding load over all participants using multiple multicast trees reduces the
bandwidth demands on individual peers.38
The system is able to distribute the forwarding load among the participating
nodes, subject to individual node bandwidth limits.39

Suitability for modification
SplitStream may be easy to modify, but it does not seem to fulfil more than
one of the project’s requirements.

SIP & IMS Suitability
SplitStream does not seem to have any relevant features in this respect.

Scenario Specific Features
SplitStream does not seem to have any relevant features in this respect.

9.3.6.2 Concluding Remarks
SplitStream seems to have valuable features for Live Streaming. However, it
seems that the Client does not support the other two aspects, i.e. Video on
Demand and File Sharing.

9.3.6.3 Related Resources
Abdulla, M.: SplitStream: High-Bandwidth Multicast in Cooperative

Environments (October 2004, unfinished presentation document)

Castro, M.; P. Druschel; A-M. Kermarrec; A. Nandi; A. Rowstron and A. Singh:

"SplitStream: High-bandwidth content distribution in a cooperative

environment", IPTPS'03, (Berkeley, CA/ February 2003).

38 Castro et al. (SOSP, Oct 2003), p.15
39 Castro et al. (IPTPS), p.6

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 69 of 95

Castro, M.; P. Druschel; A-M. Kermarrec; A. Nandi; A. Rowstron and A. Singh:

“SplitStream: High-bandwidth multicast in a cooperative environment",

(SOSP'03, Lake Bolton, NY/ October 2003).

Kermarrec, A-M. (in collaboration with M. Castro, P. Druschel, A. Rowstron, A

Nandi and A.Singh) : Reliable multicast on P2P overlays: Scribe and

SplitStream (Cambridge, UK, December 2002)

9.3.7 Tribler (Swarm Player)

Swarm player has been developed based on the Open Source Tribler codebase.
Tribler is a highly innovative P2P client, which has been initially developed by
Harvard University. The current development team is based in Delft University
of Technology and the Vrije Universiteit Amsterdam. This codebase was used
as a starting point by the EU-funded P2P-Next Consortium which has added
additional features to support live streaming. The codebase is still managed by
the original tribler team ensuring consistency and continuity. P2P Next
represents a 14 million investment (total project budget is 19 million Euro) in
P2P research by the IST programme.40 Partners include the BBC and the
European Broadcasting Union. Unlike other P2P software (Vuze, Miro) which
focus on easy access to downloadable contents, swarm player allows a user to
simply click on a live .torrent file and tune into any live BitTorrent channel.

9.3.7.1 Categories
Portability
Swarm player is available on Windows, UNIX and Mac OS. Since its beta
version has been released for windows and UNIX where as for Mac it shall be
released after bug fixing. However there is no version of SwarmPlayer
confirmed to be installed on mobile devices. A port to mobile of the core P2P
library should be possible as Python is a supported language on Windows
Mobile and Symbian Series 60 mobile devices. 41

Code Accessibility
SwarmPlayer is open source software which uses BitTorrent technology and is
building its solution on Tribler42, an open source windws/Mac/Linux P2P as core

40 Tribler.org, 19 Million Euro for P2P Research, http://www.tribler.org/P2P-Next/19Million-for-P2P
41 Nokia launches Python Open Source Programming Language for Series 60-based Mobile Devices,
http://press.nokia.com/PR/200501/978226_5.html
42 Tribler http://www.tribler.com

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 70 of 95

and the open source VideoLan Client (VLC)43. This software is developed using
python and released under GNU Lesser General Public Licence. As it integrates
two open source technologies already (BitTorrent and VLC) the software design
is quite modular. From a brief examination of the code it could be relatively
easily modified to change the video playback client.

Scalability and Fault Tolerance
As described in the above section the SwarmPlayer project is in beta however
extensive testing has been performed to measure the scalability and
performance of this software. The first public trial has been done on on 17th –
26th July 2008. Users were invited from all across the globe to watch a specific
live video stream using swarmPlayer. Over the period of 9 days 4555 unique
IP-addresses were observed to be tuned in. The scalability and performance
measurement has been done on the following parameters.

Performance over time: It has been observed that overall stalling time was
fluctuated between 0% and 10%44

Pre-Buffering Time: The amount of pre-buffering time determines how long it
takes for a peer to start playback. SwarmPlayer has smaller pre-buffering time
as it reduces the amount of time the user will have to wait for viewing the first
frame. The median pre-buffering time was 3.6 seconds, with 67% of the peers
requiring less than 10 seconds, which is 3-10 time shorter than the other
deployed systems.

Sharing Ratio: According to definition provided by Mol et al. Sharing Ratio of a
peer (or a group of peers) is defined as the number of uploaded bytes divided
by the number of downloaded bytes. Peers with a sharing ratio smaller than
one are net consumers and those with sharing ratio larger than 1 are net
producers. “The trial of swarmPlayer has shown 61% of the IP addresses to be
firewalled, and firewalled peers accounted for 52% of the on-line time of all
peers”. According to statistic provided by Mol et al during the trial period of
swarmPlayer, In total connectable peers have uploaded 0.41 as much they
downloaded, while the firewalled peers uploaded only 0.18 times as much. The
client’s scalability was assessed by looking at the average sharing ratios
against the size of swarm. For small swarms, most peers received their data
from seeders and injectors as they are first to obtain each piece and as the
swarm grows peers start to forward stream to each other. The average sharing

43 VideoLan Client (VLC), http://videolan.org/.
44 “The Design and Deployment of a BitTorrent Live Video Streaming Solution” by Mol et al

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 71 of 95

ratio improves for the larger swarms. In this respect the SwarmPlayer
approach lends itself to large scale broadcast scenarios.

Suitability for modification
SwarmPlayer can be seen as good candidate as a starting point for the P2P-
IMS platform suggested by VITAL++ as it is open source with a modular code
structure. It also uniquely addresses the issue of live streaming, which is one
of the main requirements of VITAL++. Swarm Player evolves the well-
supported tribler core.

SIP & IMS Suitability
• AAA: Tribler uses the per-user data per-user directory, e.g. on windows

this is C:\Documents and Settings\user\Application Data\.Tribler where
user is user name. it is authenticated with the private/public key
mechanism. Ec.pem file is the private key of the Tribler used, needed to
identify himself and ecpub.pem public key of the Tribler used in the PEM
format. This is public key is the user’s PermID

• Other security concerns including Message Encryption and tamper-
proofing: In the other P2P software like Vuze security of contents and
temper proofing is handled by the hashing techniques. As swarm player
handles live streaming a hash cannot be calculated. This may make him
vulnerable to the injection attack and data corruption. Data is therefore
protected using by using Asymmetric cryptography to sign the data. The
injector publishes its public key by putting it in the torrent file. Each
piece number is assigned a absolute sequence number and time stamp
by its injector.

• Billing: This is not a feature of the BitTorrent protocol but it may be
added to client in order to retrieve downloadable torrents. Tribler does
maintain information about node downloads in decentralised fashion. A
collaborative filtering algorithm is used to make recommendations based
on previous download history.

• Manageability: This is not a feature of the BitTorrent protocol.

Scenario Specific Features
• Use of DHT: DHT stands for Distributed Hash Table. In this technique

hashes of file are generated which assumes all the data to be known
before hand. In case of swarm player it may not be possible for most
scenarios, especially when broadcasting a TV channel. Unlike VoD case,
peers in live streaming are always playing approximately the same part
of the stream. All peers thus require the same data and can not
download faster than the stream generated. In existing P2P systems

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 72 of 95

90% of peers are seeding. In live streaming no peer is ever done
downloading, so no seeds exist. SwarmPlayer has developed algorithm to
deal with this issue.

• Support for isochronous media: SwarmPlayer supports isochronous
media by introducing injectors. An injector is a unique peer that provides
the swarm with the latest generated video and is therefore always
online. The video is obtained from the live source e.g. a DV camera.
Injector generates a tstream file which is similar to the .torrent file but
can not be supported by BitTorrent who lack in live stream extension.

• Digital Rights Management (DRM) integration: The main emphasize of
swarm player is on live streaming. The big broadcasting companies like
BBC is working with P2P-Next project which aims to develop open source
media delivery platform that is perfectly legal.

Configurable content replication mechanisms:
Swarm Player support 3 kind of behaviours.

• Download the video, and watch it afterwards (typical BitTorrent
behaviour)

• Watch the video while downloading it (Video-on-Demand, Vuze
and Joost)

• Watch the video while it is being generated (web-cams, live TV
broadcasts, etc)

The first two techniques can be found in other P2P clients whereas the third
technique is currently unique to Swarm Player. Swarm players use a sliding
data window that rotates over a fixed number of pieces. Pieces that fall outside
the window will be considered as out-dated. Each peer deletes the out-dated
pieces, and will consider them to be deleted by its neighbours as well, thereby
avoiding the need of additional messages. When peer joins the network and
connects to other peer it learns about which pieces are available and has
decide which pieces they own within their own sliding window.

• Anonymity of peers: There is no built in mechanism provided by Swarm
player to keep peers anonymous however this functionality is not
incompatible with the SwarmPlayer/Tribler approach.

• Rewards mechanism: The standard bit-torrent choking mechanism is
applied.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 73 of 95

9.3.7.2 Concluding remarks
Swarm player is open source and its python codebase has a clear and coherent
design. It's the result of the extensive research and development of the IST-
funded P2P-Next consortium with unique features designed for the demands of
live streaming multimedia content. The use of public/private key assymetric
cryptography provides strong encryption and mutual authentication
mechanisms. The addition of Support for Subscriber Certificates (SSC) is in line
with the latest Generic Authentication Architecture (GAA) specifications from
ETSI (See 3GPP TR 33.221). Node IP's are not anonymised permitting the
geoblocking scenario described. There is no specific support for multimedia
conferencing but the live streaming feature of SwarmPlayer could be exploited
for group video conferencing. Based on information about the P2P-Next
consortium it appears the platform will be extended to support DRM
capabilities where required. Tribler has excellent support for custom playlist
support and also introduces collaborative filtering to provide recommendations
to users about new media they might like. This is suitable for the personalised
radio scenario. SwarmPlayer has a very sophisticated media distribution
algorithm designed to tackle the problem of seeding during a live broadcast.
This mechanism based on a synchronised delivery window for media data
would probably be advantageous in remote rural access scenarios as it may be
useful in managing variable bandwidth and jitter profiles common outside of
urban. areas.
Additionally the software enables video on demand, file distribution or live
streaming approaches to content distribution making it highly flexible and an
ideal choice for adaptation by the VITAL++ consortium.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 74 of 95

10 IMS clients as a basis for VITAL++ functionality

In order to build a hybrid P2P/IMS client, one approach is to expand an
existing P2P client, which supports the P2P part and needs IMS extensions.
Another approach is to use an existing IMS client and expand it with the
required P2P functionalities. In this chapter, we will shortly discuss two IMS
clients, namely the VITAL IMS client and the MONSTER IMS client framework.
In this context, subsections 10.1 and 10.2 present the VITAL client and
elaborates on the enhancements that can be made, while subsection 10.3
presents the Monster IMS client, providing the basis for integrating with the
P2P client used and extended in order to support the use cases described
earlier in the document.

10.1 VITAL IMS client
The Application Server that has been implemented in the context of VITAL
offers three kinds of services:

• Video Streaming
• Data Sharing:

o Chat Service
o Collaborative Drawing

Video Streaming
Contrary to standard SIP based applications (video and audio calls), Video
Streaming is not bidirectional with respect to the transmission of media
content. The SIP part of the communication aiming at call establishment is
based on a standard SIP invitation and media negotiation (SDP) session that in
the sequel leads to a one way transmission of media packets from the Server
to the Client side of the communication. Once the client has successfully
registered with the appropriate SIP proxy, the user can invite (SIP call) the
Application Server. The invitation as well as the “200 OK” response contain an
SDP part in which the two parties define the codec parameters as well as the
network ones that should be considered during RTP transmission. The movie
selection feature that is offered to the AS clients is based on the exchange of
SIP Instant Messages (IM). Extra information is added to these messages,
which is aimed at being processed by the UAC and UAS so that the various
features of the service can be supported. After the successful call setup the
Server sends via IM a list with the available movie clips and a keyword to be
used by the client to request the transmission of the selected movie clip. The
movie selection request is also sent by the client via IM. The implementation of
the Application Server and the corresponding clients was done by using
standard SIP techniques so that the solution can be easily integrated with the

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 75 of 95

IMS platform and be considered as a proof of concept with respect to the
additional services (that are usually feasible to be provided over public IP
infrastructures) that can be realised over the IMS platform.

Data Sharing
In the Data Sharing applications (Chat and Collaborative Drawing) a registered
client can send to the Application Server either a text message or a drawing
description via IM. The Data Sharing server builds a list with all the client
instances that have communicated at least one Instant Message to it. This list
serves as reflector for all the messages that arrive to the server. Every
message is distributed to all URIs included in the list with an indication
revealing the originator. In case a message sent to a specific URI is not
acknowledged by a “SIP 200 OK” the server increases a counter by one until
the counter reaches the value of ten. In such case the entry is removed from
the list. The originator of a message receives as well the message it has sent
which is not displayed on the user’s application GUI unless it has been received
from the AS. The UACs translate the received messages according to their type
(chat or drawing) and display these on the appropriate GUI element (text area
or drawing canvas).

10.1.1 VITAL IMS Client description

Overview

The Client SW is a Java SIP UAC. It contains a SIP handling module and
integrates media handling resources from SUN’s JMF package (Java Media
Framework). It supports SIP IM (Instant Messaging) and it utilizes it to provide
Chat and Collaborative Drawing Services.

GUI Description
In the settings dialog users define their account and the accompanying
password. They also define the proxy with which they can register (both
address and port number). Users have also to define the address and the port
of the network interface through which their host connects to the network. The
port number can be anything, in case of definition of an occupied port the
client increases the number of the port until it finds a free one. The user
presses the “Register” button to register with the proxy, the button then
becomes “Deregister” for deregistering.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 76 of 95

Figure 24 Settings dialog

Figure 25 Main Window – Debug Console

All the SIP messages processed (incoming and outgoing) by the client are
printed on the Debug Console.

Movie Playback
Once the user has invited the Application Server, on the Media Player tab a list
with the available movies appears. Pressing any of the buttons triggers the
server to start streaming the corresponding movie clip. The user can change
on the fly the selected movie or restart an already ongoing one by pressing the
corresponding button.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 77 of 95

Figure 26 Main Window - Media Player

Figure 27 Main Window - Media Player (movie 0)

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 78 of 95

Figure 28 Main Window - Media Player (movie 1)

Chat Service
Using the Chat Board the user can send messages that are reflected to all the
users that have already sent a message to the AS. The message submitted (by
pressing enter after the message has been composed) is not reflected directly
on the chat board of the user but it has to be received by the reflector the AS
is implementing.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 79 of 95

Figure 29 Main Window - Chat Board

Collaborative Drawing Service
Using the Drawing Board the user can draw straight lines (by clicking on the
canvas – holding the mouse button and releasing it to another point within the
canvas). The drawing instruction is sent to the AS and then it is broadcasted to
all the parties that either have sent a text or drawing message. Again the line
drawn by the user need to be reflected back by the AS in order to be displayed
on the canvas.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 80 of 95

Figure 30 Main Window – Collaborative Drawing

10.1.2 Evaluation of VITAL IMS client concerning compatibility
with the VITAL++ use cases

The VITAL client has been developed in the context of the VITAL project and
has been tested against compatibility with the IMS operations with traffic
experiments on the IMS network of NSN.
To analyze the relevance of this client in serving the operations of the three
use cases described in section 7, we need to divide its operations in two parts,
the signaling and data part.
Starting from an examination of the three selected use cases, we observe that
their basic signaling operations, such as user recognition and data path setup
for content delivery do not deviate from the classical server/client
communication paradigm and therefore may be realized with standard IMS
signaling. Yet, management of content distributed across the network requires
utilization of special content discovery and assembly methods suited to the P2P
communication paradigm. These methods are not supported by IMS clients.
Furthermore, in IP networks the data part is always implemented with a
variety of coding schemes and data encapsulation protocols (e.g. RSVP, RTP,
etc) and therefore cannot be formulated into specific categories. However, in
regard to content management, all three use cases have the common
characteristic of working with fragments of content spread in the network.
Gathering and delivering such fragmented content to the user requires
implementation of special messages for peer-to-peer communication and real

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 81 of 95

time content assembly algorithms. In the communication model envisaged in
section 7.1.2.1 the IMS client does not have to gather the content using such
P2P messages and assembly algorithms but retrieves it assembled from a P2P
server. This implies that the IMS client should support additional signaling
mechanisms to implement communication with the P2P client. Since such
mechanisms are proprietary to the IMS operations are not supported by IMS
clients.
Having analyzed both the signaling and data parts operations we can make
conclusions about the ability of the VITAL client to support them.
As a first conclusion it can be stated that the VITAL client is compatible with
the IMS operations required for the integration of the use cases within IMS
networks. However, supporting IMS-based operations related to fragmented
content discovery and assembly requires further development on the signaling
part so that the client can communicate with P2P servers according to the
signaling scenarios stated in section 7.1.2.1.
Concerning data part functionality, it can be stated that since the IMS signaling
operations are independent of the format of the data traffic, an IMS client may
support any coding scheme (data format) without bringing up any impact on
the functionality of the IMS network. It is therefore possible for a client to
support without modifications any content type, as long the appropriate
content encoder and decoder algorithms are supported by the client software.
Following the above analysis the table below makes an extrapolation of the
observations made for the VITAL client to all IMS client types to conclude to
general statements concerning P2P operations support.

Use Cases/Client
supporting
functions

IMS
signaling

IMS-P2P
server

communication

Content
delivery45

Multiplexed
content

RBB remote Yes No Yes -

Soft Radio Yes No Yes Yes

Remote Rural
Areas

Yes Yes46 Yes -

Table 2: Classification of IMS clients concerning support of the operations of the use
case scenarios

45 ‘Yes’ is valid only in cases where the client has the appropriate encoder/decoder algorithms embedded.
46 ‘Yes’ is valid in some cases, when the use case designates that the content can be taken from sources where it is
stored not fragmented.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 82 of 95

10.2 The enhanced VITAL client
The client described in this section will be an enhanced version of the client
implementation of the VITAL project able to support IMS signalling as well as
P2P operations for content management. At its current form, the VITAL IMS
client integrates in a single piece of software three user applications:

• A chat client, implementing point-to-point user communication with text
messages exchange.

• A data sharing client, implementing sharing of graphical information and
real time editing.

• A video streaming client, implementing a video on demand service.
Concerning its signalling part, currently the VITAL IMS client implements a
version of the SIP protocol which allows it to communicate with the IMS core
networks and perform all typical user operations, such as user
registration/deregistration, charging and session initiation/termination.
The data part of the client is based on the adoption of open media delivery
frame of the VideoLan open software project (www.videolan.org). The server
side required for the implementation of the video streaming service is also
based on the VideoLan project.
Both client and server sides of the VITAL IMS client were tested against
compatibility with IMS operations on the IMS core network of Siemens,
whereas integrated experiments with real content were held with the IMS
client installed on the testbed of UoP.
Transformation of the VITAL client into a P2P piece of software will require
modifications in the way the client communicates with the IMS network and
the data networks containing content. The server should also be considerably
modified with functions allowing tracking and assembly of user-requested
content residing in the network in form of fragments.
As Figure 31 depicts, the server side will be replaced by a P2P client, which is
‘seen’ by the IMS client as the server of the requested content. The IMS client
may communicate with the P2P client with HTTP messages in order to submit a
request for specific content delivery. Once the user request is intercepted and
recognized by the P2P client, the latter contacts the content tracker in order to
get an updated list of peers in the IP network having specific parts of the
requested content. Once this list is obtained, the P2P client answers
affirmatively to the IMS client concerning its request and the latter contacts
the IMS network to get registered and charged for the requested content.
Successful user registration triggers the content downloading process on the
P2P client. Content assembly is performed either dynamically by the IMS client
or locally by the P2P client through utilization of special packet (or fragment)
assembly queues.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 83 of 95

Video Content

Shared Data Content

SIP Messages

Data Path (IP or RTP/RTCP)

IP interfaces

Web
Server
pages

SIP
Client part

(server side)

Video
Server

(VideoLan)

Data
Server

S-CSCF

VITAL Server Side

VITAL Client Side

IMS core
network

IP network

SIP
P2P client Framgents

assembler

S-CSCF

VITAL++ Server
Side

VITAL++ Client
Side

IMS core
network

Content
Tracker

IP network

Transition to P2P
Network operations

Figure 31 Transformation of the VITAL client/server to match P2P network

operations

In its new form the IMS client will support two application types; a) file
transfer and b) live media streaming. The first application type will be realized
by BCT within the first year of the project and the second during the half
project period.
Traffic experiments for the validation and performance evaluation of the two
applications will be hosted on the UoP testbed, while service deployment and
IMS operations will be provided by the commercial network of Voiceglobe and
the IMS testbed of Fraunhofer, respectively.

10.3 Monster IMS client
The MONSTER SDK is a set of independent implemented libraries and
components which allows rapid creation of IMS and non IMS client applications.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 84 of 95

Figure 32 gives an overview on the general elements of the framework. While
the picture is organized in layers, this does not mean the upper layer depends
directly on the existence of the lower layer. Each layer provides general
interfaces which are intended to be used by either components of the
framework itself or third party add-on components. The application framework
components will keep track of all layers and combine the components from
each one to create an application. So developers will always have the choice
whether their application is an instance of the application framework or if it
just uses components from one of the layers specified there.

Figure 32 MONSTER framework

10.3.1 IMS Engine

The IMS Engine consists of three main components which are combined to
provide fully integrated IMS functionality. Each of these components provides
well defined interfaces which allow the implementation to be exchanged easily
without affecting the functionality of the remaining components.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 85 of 95

Signalling
The signaling component implements three main use cases on top of the SIP
protocol: registration, session management and event handling. The
registration procedure makes the communication endpoint information from
the user available within the IMS core network. All IMS related extensions to
the SIP protocol such as the service route header, AKA authentication and
network access info header are supported by the signalling component.
The session management part implements creation, modification and
termination of multimedia sessions. It controls the media manager for codec
and transport negotiation and creation, termination of media streams.
The event management system wraps the SIP event package and provides
additional services like automatic subscription handling and event filtering.

Media
The media manager is responsible for creation and management of media
connections. Additionally the media manager takes care for protocol and codec
implementations, installed within the framework. Currently the following set of
transport, protocol and codec implementations are available.
Transports:
 UDP
 TCP
Protocol:
 RTP
 MSRP
 HTTP
Codec:
 Audio: G711, AMR, GSM, MP3, AAC
 Video: H263, H264, MPEG2, MPEG4

The current implementation of the media manager relies on the Java Media
Framework47 and can be extended by providing plug-ins for this framework.

Configuration
The configuration component implements access to the shared client
configuration within the IMS core network. It contains three parts: a high level
API for retrieving and modifying shared xml configuration documents, a
notification API for retrieving notifications on document changes and
specialized API’s for getting access to predefined service configuration as:

47 Java Media Framework: http://java.sun.com/javase/technologies/desktop/media/jmf/

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 86 of 95

 Resource lists
 Directory information
 Common Policy Management
 Presence authorization

10.3.2 Application Components

The application components layer provides several components to support
application development. These components can be used as class library and
they offer easy to use, high level APIs.

Presence Service
This service implements the IMS presence event package by reusing the event
API offered by the IMS Engine.

Location Service
Location information can be used to implement a lot of useful applications. This
service gives access to the actual location of the device the application is
running on. The use of location information source allows adaptation to several
scenarios – GPS based location, Cell ID based location. If there is no location
information available through the network, e.g. for a desktop PC with LAN
connection, location information must either be user/administrator supplied or
location services will not be available.

Telephony Service
The call service manages creation, modification and termination of voice and
video sessions.

Chat Service
The chat service manages creation and termination of text based chat
sessions.

Peer-2-Peer Service
Peer-2-Peer Services are currently not implemented in the MONSTER
Framework. Due to the modular architecture, it is possible to create additional
modules, which then can realize Peer-2-Peer services, i.e. create content
related overlays, forward streams, etc. As the MONSTER Framework already
features a SIP stack for IMS communication, this can also be used to
implement P2PSIP based services with only minimal effort.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 87 of 95

10.3.3 Application Framework

The application framework was designed to support the development of feature
rich client applications. It offers a flexible structure for new applications and
provides a clear application design. Anyway developers are free to choose
whether they use this framework or not in order to build their applications and
modules

Component Toolkit
The Component Toolkits provides a set of classes for creation of component
based applications. It reduces the needs for writing infrastructure code by
offering component related services like:

• Component Lifecycle Management
• Class and Service factories
• Component composition through dependency injection

Beside the core services this toolkits offers a clear application design which is
well structured. It implements several patterns and combines them to create a
framework which can be used to create new applications.

View System
The view system helps to separate presentation logic from application logic. It
basically consists of a view class factory which creates views on demand and
presents them to the user. The view classes themselves are implemented in a
technology specific way and can be adapted to several platforms (Desktop,
Mobile, Web) and presentation frameworks (AWT, Swing, SWT, etc.). The view
system is well integrated in the component toolkit to support Model View
Controller patterns.

Package Manager
The whole framework can be extended through new functionality. The package
manager realizes a plug-in concept where the framework can be simply
extended by adding new JAR files. The package manager also includes the
ability to manage versions and automatic updates of plug-ins.
Device Manager
The device manager offers an OMA DM compliant interface for managing the
framework deployment and configuration. It allows to install new framework
modules on devices.
Notification/Message Service
The notification and message service enables client application developers to
use a presentation independent framework for user notification and user
interaction.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 88 of 95

The messaging services can be used to display information or error messages
with the ability to get feedback while the notification service will notify the user
about events (incoming messages, presence changes, …).

10.3.4 Applications

Based on the functionality of this framework a set of applications were created.
These applications range from the well known Softphone functionality till the
integration of Web2.0 functionality like Google Maps and Flickr.

Address book and buddy list
The address book allows personal contact list management. Contacts can be
organized in different groups. Well known values for contacts like
communication address can be stored and modified. The list of values which
can be associated with contacts is extensible. The buddy list is stored in the
XDMS and is accessible from every device.
The presence service allows the presence state of each contact to be seen and also
manages subscription to presence notification of each contact.

Softphone
The softphone is a full featured telephony application on top of IMS
functionality. It provides basic functionality as call creation and termination as
well as advanced call features as call transfer, hold/resume, video and
conference calls2.

Chat
The chat application provides chat functionality which can be found in actual
messengers like MSN, ICQ or Yahoo. But in contrast to these applications, this
implementation aligns with the standards managed by OMA and 3GPP. Next to
the basic chat functionality, also additional services like binary file transfer and
chat conferences3 are implemented.
Map
The map application combines the location service with Web2.0 services like
Google Maps to offer map functionality. This includes graphical presentation of
map material and special locations as the own position provide by the location
service. By enriching the presence information with location data, the map
application is able to show the buddies on the map.
File sharing
This application enables sending and receiving files to contacts and groups.
This is a standard functionality, also known from common messengers, like
ICQ, etc.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 89 of 95

10.3.5 Evaluation of Monster client concerning compatibility
with the VITAL++ use cases

The MONSTER IMS client framework is currently under construction as an in-
house project at Fraunhofer FOKUS group NGNI. It consists of multiple layers
of APIs for extensions and plugins, residing at different levels of complexity.
To analyze the relevance of this client in serving the operations of the three
use cases described in section 7, we use the same scheme as for the VITAL
IMS client, which is evaluated in section 10.1.2.
As a first conclusion it can be stated that the MONSTER IMS client framework
is compatible with the IMS operations required for the integration of the use
cases within IMS networks. However, in order to support conferencing, as
described in section 7.1.2.1, an external conferencing server is required. Also,
in order to re-assemble different media types for a session (e.g. audio and
whiteboard), additional development for the signaling part would be required.
Concerning data part functionality, it can be stated that since the IMS signaling
operations are independent of the format of the data traffic, an IMS client may
support any coding scheme (data format) without bringing up any impact on
the functionality of the IMS network. It is therefore possible for a client to
support without modifications any content type, as long the appropriate
content encoder and decoder algorithms are supported by the client software.
Following the above analysis the table below makes an extrapolation of the
observations made for the MONSTER IMS client framework to all IMS client
types to conclude to general statements concerning P2P operations support.

Use Cases/Client
supporting
functions

IMS
signaling

IMS-P2P server
communication48

Content
delivery49

Multiplexed
content

RBB remote Yes No Yes -

Soft Radio Yes No Yes Yes50

Remote Rural
Areas

Yes No Yes -

Table 3: Classification of IMS clients concerning support of the operations of the use
case scenarios

48 ‘No’ is valid as currently no P2P protocols or algorithms are currently available for MONSTER.
49 ‘Yes’ is valid only in cases where the client has the appropriate encoder/decoder algorithms embedded.
50 This just means to change the media relation by using IMS session signalling.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 90 of 95

11 Overall Evaluation and Design Goals for P2P and
IMS clients

In this deliverable we have described and evaluate P2P clients and IMS clients
that exist in the market right now. Additionally in the beginning we have
presented the applications that VITAL++ will deliver (P2P content distribution
(CD), P2P live streaming (LS) and P2P assisted video on demand (VOD)) and
the current research challenges that we have to address in order to achieve
these goals. Through our evaluation we have spotted the limitations that
today’s P2P clients have which gives and motivation and highlights the issues
in which we have to focus.
At first the major limitation that we have observed in every P2P system that
we have analyzed is the absence of a mechanism that will ensure content
availability. On the other had here are two architectures that address P2P
content location problem in today’s P2P clients. The first is the use of a
flooding mechanism that we observe in clients as Limewire and Cabos that use
the Gnutella network. Each user that requests content issues a query in the
system in order to retrieve the network addresses of other users that have the
content. This query is flooded through the overlay and every node that owns it
returns to the initiator of the query its network address. Another approach that
we have seen in Azureus and Tribler is the insertion of the content as a key in
a DHT. Each node that owns content inserts this information in the DHT and
each node queries the DHT in order to retrieve it.
What is needed is the extension and enhancement of the existing system for
content location to ensure content availability. In more detail there is a need
for a monitoring system that will detect the existence and the redundancy
(frequency) of each content block in the participating users. This system must
be supported by a centralized manageable content storage system that will
cooperate with the DHT in the P2P client and it will guarantee the data
availability and will dynamically infuses to the users rare or absent content
blocks.
The second limitation of the P2P clients that we have evaluated is the absence
of uninterrupted service functionality, especially for real time
applications as LS and VoD. This is due to the insufficient and dynamic
network resources that are unable to meet the requirements of these
applications. Coolstreaming and Pplive try to optimize the graph of the overlay,
create a sophisticated scheduler and exploit the heterogeneous bandwidths in
order to deliver P2P LS. From their poor QoS it is clarified, from our point of
view, the usefulness of a centralized system that with the use of video
encoding and/or transcoding will adapt the service requirements to the
network or user resources that it will dynamically monitor. Additionally it will
have the ability to supply temporary (for a short time interval) or spatially (in
specific network regions) network resources in order to stabilize the service in

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 91 of 95

case of aggregate bandwidth fluctuations and high rates of incoming users
(flash crowds).
For peer assisted VoD the research problem becomes more challenging as we
observe through the examination of clients as Azureus and Tribler and recent
research works. The major reasons for this situation have described in the
previous paragraph. Additionally except the adaptation in the network
resources also rises a research challenge on the creation of more sophisticated
overlays, part of these schedulers are already implemented in some P2P
clients, in order to have a high level of cooperation of users with common
content interests and more advanced schedulers in order to satisfy the more
strict constraints that service nature introduces (different users consume
different parts of the stream in each time instant).
In every P2P client as long as it is not proprietary and it is not designed for
commercial use the insertion of a node is performed from a bootstrap node
and nodes join the overlay without any restrictions. So no authentication is
performed, as no subscriber base exists, so everybody can join an overlay and
use its services. On the contrary in VITAL++ there is a need for an
authentication system where IMS will control the entrance of a node in
the overlay and will authorize the connection between any
participating nodes. The creation of a connection in the overlay and the
termination of a connection will be reported to the IMS authentication system
and so bad user behaviour (ex. free riding) will be infeasible.
Additionally in existing P2P clients the content is not protected and every user
has access to acquire and even modify the content that it downloads.
Furthermore due to network or other component failures content may be
corrupted. At last possible attacks can pollute the content and make it
unsuitable for consumption. Due to these reasons there is a need for a
content integrity and management system that will ensure the reliability
of the content, it will manage its digital rights and it may be responsible for the
key management of encrypted content, with respect to the P2P client’s
encryption functionalities, in order to develop a content charging mechanism.
At last in order to minimize the load (and also the ISP cost) the is introduced
to the underlying network through P2P applications and increase the fault
tolerance and the consistency of the services there is a need for a locality P2P
overlay. Most P2P clients are agnostic to locality except some proprietary as
PPlive that takes partially locality as criterion of the overlay construction and
Azureus that uses a mechanism, called Vivaldi, which through distributed
optimization creates a vector that reflects the position of each node in the
underlying network.
Looking at the IMS clients currently available it is evident that in order to
introduce P2P in IMS or in a telecom operators environment at large, IMS and
P2P clients are required to intercommunicate with each other for exchanging
relevant information towards a common goal. The kind of information

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 92 of 95

exchanged is dictated by the use cases defined in VITAL++ and includes
information relevant to security, digital rights, authentication etc necessary for
P2P to function in an IMS environment. This can be achieved by means of
either integrating the P2P functionality in the IMS client or by defining the
proper interfaces between the two types of clients. The latter is the most
efficient way as it allows using a variety of P2P clients for deploying different
kinds of overlays customised for certain applications.
Furthermore, exploiting such interfaces the IMS clients may use the content
distribution capability offered by the P2P clients in order to support a large
number of related applications that are currently offered via conventional
ways.
This will be the approach adopted in VITAL++ whereby the two IMS clients
(VITAL and Monster) will be adapted to interface with the P2P clients and
corresponding functionality designed for VITAL++.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 93 of 95

12 Conclusions

In this document we have carried out a study of evaluating P2P and IMS clients
in the context of a number of use cases. Our objective has been to identify the
key features that are currently missing in order to support content distribution
in an IMS environment.
We have examined the requirements from the three applications that VITAL++
will deliver as commercial services. Towards this goal we consider that P2P
architecture will be of high importance in order to infuse scalable and stable
behaviour to them. Additionally IMS will offer a management system that will
guarantee a secure, reliable and uninterrupted behaviour to the
aforementioned applications.
Through the examination of the architecture and the algorithms that constitute
the state of the art in today’s file sharing and content distribution P2P systems
we have derived useful observations in order to select the enhance the
appropriate P2P clients. As a conclusion we can highlight that today content
distribution mechanisms and systems achieve a high level of performance in
resource utilization and have high levels of fault tolerance. On the other hand
content availability, free riding and flash crowds are the major problems of
them. Through the combination with an IMS client and the development of a
management system we plan to address these technical challenges.
P2P live streaming is a more complicated problem and its major difficulty is
that it requires real time constraints in block delivery. These constraints
tighten the requirements in the overlay construction and in the scheduler that
we have to develop in order to deliver this application. Again data location and
availability is an issue that we have to address, the dynamic adaptation of the
service resource requirements, to the existing network resources is also of
major importance for P2P live streaming uninterrupted functionality. Most P2P
clients for LS are proprietary but in the literature we can find promising
algorithms and architectures that convince us that the implementation of such
a client is feasible and with no very high levels of risk.
The third application is P2P VoD and as we have spotted from the literature is
the most demanding application in terms of the research challenges that we
have to address. So practically feasible P2P VoD systems are focus on the
support of a server system infrastructure as a fail-over solution. On the other
hand they can significantly reduce the bandwidth that servers consume by
optimizing the piece selection strategy and by the formation of overlays
according to the users correlation in terms of requested blocks.
Through the evaluation of P2P clients we have observed that Azureus, and
Tribler are open source clients with high level of stability and widely adopted
from today’s P2P users. Additionally they offer a DHT, many security functions,
encryption and even algorithms that exploit locality in the network between

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 94 of 95

users. Additionally they deliver very efficient schedulers for content distribution
and also allow VoD features in case of efficient network resources. This makes
them strong candidates for their use in VITAL++ architecture.
At last in section 11 we briefly described the major technical objectives that we
have to address and the major systems that we have to develop during the
duration of the project.

Deliverable D2.1: Peer-to-Peer client evaluation and market overview

Page 95 of 95

- End of document -

