
 Deliverable D2.3: Detailed client adaptations specification  

 
 

Page 1 of 64 

 

Project Number: Contract Number: INFSO-ICT-224287 

Project acronym: VITAL++ 

Project Title: Embedding P2P Technology in Next 
Generation Networks: A New 
Communication Paradigm & 
Experimentation Infrastructure  

Title of Report Detailed Client Adaptations Specification 
 

Instrument: STREP 

Theme: ICT-2-1.6 

Report Due: M9 

Report Delivered:  

Lead Contractor for this deliverable: TID 

Contributors to this deliverable: TID, UoP, RBB, BCT, CTRC, WIT, FOKUS 

Deliverable reviewer: RBB 

Estimated person Months: 11 

Start date of project: 1st June 2008 

Project duration 30 months 

Revision: Version 1.5 

Dissemination Level: PU - Public  

 
 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 2 of 64 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally blank 



 Deliverable D2.3: Detailed client adaptations specification  

 
 

Page 3 of 64 

1 Table of Contents 

1 Table of Contents .............................................................................. 3 

2 List of Figures ................................................................................... 5 

3 Document History .............................................................................. 6 

4 Executive Summary ........................................................................... 7 

5 Introduction ...................................................................................... 8 

5.1 Scope ....................................................................................... 8 

5.2 Deliverable Structure .................................................................. 8 

6 Functionality Requirements ................................................................. 9 

6.1 IMS related Functions ................................................................. 9 

6.1.1 Authentication ........................................................................ 9 

6.1.2 IMS Session Management ........................................................ 9 

6.1.3 Session Negotiation and Setup ................................................10 

6.1.4 Management of Network Limitations and Restrictions .................10 

6.2 P2P related Functions ................................................................11 

6.2.1 P2P Distributed Queries and DHT Overlay .................................14 

6.2.2 P2P Content Diffusion Overlay .................................................16 

6.2.3 P2P Scheduling ......................................................................18 

6.2.4 Overlay Optimisation & QoS Management .................................20 

6.2.5 Modularity of Design & Implementation ....................................21 

6.3 Content related Functions ..........................................................22 

6.3.1 Audio/Video Capturing and Play-out .........................................22 

6.3.2 Graphical User Interface (GUI) ................................................23 

6.3.3 Content Security Measures .....................................................23 

6.3.4 Content Management .............................................................24 

6.3.5 Content Discovery and Advertisement ......................................24 

7 VITAL++ Generic Client Architecture ...................................................25 

7.1 Module Architecture Overview ....................................................25 

7.1.1 User Interaction Layer ............................................................26 

7.1.2 Protocols Layer ......................................................................26 

7.2 Underlying Data Models .............................................................27 

7.3 General Interface Definition ........................................................32 

7.3.1 UNI Signalling Interface ..........................................................33 

7.3.2 UNI Transport Interface ..........................................................34 

7.4 VITAL++ Client Architectural Components ...................................35 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 4 of 64 

7.4.1 IMS related Components ........................................................35 

7.4.2 P2P related components .........................................................38 

7.4.3 Content related components ...................................................50 

8 Specific Clients Adaptations ...............................................................52 

8.1 Monster Client ..........................................................................52 

8.1.1 IMS related functions .............................................................52 

8.1.2 P2P related functions..............................................................53 

8.1.3 Content related functions ........................................................55 

8.2 BCT Client ................................................................................56 

8.2.1 IMS related functions .............................................................56 

8.2.2 P2P related functions..............................................................57 

8.2.3 Content related functions ........................................................58 

9 Implementation plan .........................................................................61 

9.1 Monster Client ..........................................................................61 

9.2 BCT Client ................................................................................62 

10 Conclusions .................................................................................64 



 Deliverable D2.3: Detailed client adaptations specification  

 
 

Page 5 of 64 

2 List of Figures 

 
 
Figure 1: Interdependent Layers within a P2P Overlay   .............................12
Figure 2: Overlay Weaver architecture   ...................................................22
Figure 3: Possible Generic Client Architecture   .........................................25
Figure 4: Permanent Subscriber Data from 3Gdb Home Subscriber Server 
(HSS)   28
Figure 5: Graph architecture of the content diffusion overlay   ....................42
Figure 6: Iteration of the Intra-DOA   ......................................................44
Figure 7: Iteration of the Inter-DOA   ......................................................45
Figure 8: Snapshot of a buffer in a node with the states of the blocks   ........47
Figure 9: Layered architecture of MONSTER depicts adaptations   ................52
Figure 10: Signal- and workflow for media exchange   ..............................55
Figure 11: MONSTER P2P Implementation plan   ......................................61



Deliverable D2.3: Detailed client adaptations specification    

 

Page 6 of 64 

3 Document History 

The aim of this deliverable is to provide the necessary adaptations within the 
Peer-To-Peer Client Software chosen by VITAL++. 
 

Revision 
Month 

Filename 
version 

Summary of Changes 

M7 V0.1 Initial Report - ToC 

M8 V0.2 ToC with partners assignments 

M8 V0.3 Fokus contributions “requirements and 
architecture” 

M8 V0.4 Updated ToC according to Fokus contributions 

M8 V0.5 TID contributions 

M8 V0.6 “Introduction” by TID 

M8 V0.7 Monster contributions by Fokus. BCT “IMS 
related” texts 

M8 V0.8 Added section 7.2 Data Model section to 
document. 

M9 V0.9 Added an updated version of paragraph 8.2.1 

M9 V1.0 Added description 7.3. contributions needed by 
TID. 

M9 V1.1 Added figure 7.1 (BCT), revision from BCT and 
Fokus clients, Content related functions (BCT). 

M9 V1.2 UoP contributions (sections 9 and 10) 

M9 V1.3 CTRC contributions (section 7.3) 

M9 V1.4 Updated version with all contributions inside 
(TID) 

 V1.4.1 First revision up until 8.2.1 (included), (RBB) 

M9 V1.5 Updated contributions from TID according to 
revision + added section 4 from RBB 

 
 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 7 of 64 

4 Executive Summary 

Following the VITAL++ Use Case Scenarios and the respective requirements 
the clients used in the project will have to bring together features and 
functionalities from the IMS and the P2P worlds. 
The main IMS-related functions required by the envisaged use cases are 
authentication (AAA), IMS session management, session negotiation and setup 
and management of network limitations and Quality of Service by the provision 
of bandwidth from centralized servers. IMS will be also responsible to manage 
the digital rights of each object and billing functionalities. 
The P2P Overlays will have to be able to cater for different requirements 
(bandwidth, in particular) by using the network, storage and CPU resources on 
the user terminal side. To this end, peers will infuse scalability to the system 
by the utilization of their bandwidth and QoS by the development of a content 
diffusion overlay according to the traffic conditions in the underlying network 
and their upload bandwidth capabilities. Additionally block schedulers by using 
this overlay as a service they will be able to perform real time video and/or 
audio distribution fast and with high resource utilization. Finally we will 
examine the scenario of distributed content management in order to offload 
the resources of IMS application servers and create a highly scalable system in 
terms of the content volume that is able to manage. 
The overlay construction will require features of both, a centralised and 
decentralised approach. A plug-in architecture for overlays enabling new and 
innovative overlay implementations to be added to Vital++ nodes seems a 
crucial requirement with regard to P2P Overlay modularity. 
The P2P-IMS client will need to inherit basic P2P functionalities for content 
search, content retrieval/distribution, content mixing and IMS functionalities 
such as telephony, media broadcasting and full SIP support. Essential features 
for P2P content delivery have to cater for all three basic options: file sharing, 
VOD and live streaming and should be compatible with the Torrent file format. 
Both, VITAL++ clients, the one by FOKUS as well as the one by BCT, were 
originally constructed as IMS clients so that the project’s IMS requirements are 
already met. With regard to P2P, especially transport, playback and play out 
functionalities will have to be implemented. As both are relying on the Java 
Media Framework (JMF), high measures of synergy in the development 
processes should be possible. 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 8 of 64 

5 Introduction 

5.1 Scope 
The Detailed client adaptations specification, developed in this deliverable, 
aims to define the implied changes that the pre-selected P2P clients need, in 
order to obtain all the functionality requirements that this project covers. 
Taking into account the results of the peer-to-peer client evaluation and the 
trial network specification, the necessary adaptations within the peer-to-peer 
client software is being specified within this document for the two different 
clients: Monster client and BCT client. 
The specification of the changes is undertaken in close correlation to the client 
structure and nurturing existing open interface specifications, preferably based 
on the IMS protocol language SIP. A close description of the underlying data 
models and software structures is given in this document as well. 
According to the content of the deliverable, an overview of the document is 
detailed below: 
• Overall description of the requirements that must be implemented in the 

Vital++ client, providing the functionality that the project needs to cover 
the envisaged scenarios. 

• Explanation of the architecture that a generic Vital++ client must perform, 
without being based in a pre-selected P2P client. 

• Individual adaptation specifications: a list of the necessary adaptations to 
be applied to both P2P clients (Monster client and BCT client). These 
changes are divided into three different aspects: IMS, P2P and content. 

• A possible implementation plan for each client, ordered according to a 
timeline. 

5.2 Deliverable Structure  
This deliverable is structured into four parts, not corresponding with the 
numbers of the sections: 
• Part 1 (#1-5) is the introduction to the document, in which the scope and 

the structure of the report are presented. 
• Part 2 (#6-8) presents an overall description of the needs of the future 

Vital++ client and the architecture to implement these requirements. 
• Part 3 (#9) elaborates on the individual implementation plans of the two 

clients and identifies the changes that must be executed during the P2P 
client modification. 

• Part 4 (#10) offers the conclusions for the adaptation process and the 
deliverable. 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 9 of 64 

6 Functionality Requirements 

In order to enable the envisaged features (VoD, live streaming and file 
sharing), a hybrid IMS/P2P client would have to be able to perform the 
following tasks. 

6.1 IMS related Functions 
The IMS capabilities of the hybrid IMS/P2P client focus on the support of 
control plane operations. These operations are expected to enable the client to 
operate in and take advantage of the IMS infrastructure so that it can benefit 
from IMS communication features.  

6.1.1 Authentication 

Contrary to the P2P concept, IMS operates in a fully controllable and 
centralised context. This context caters for the support of a multitude of 
Authentication, Authorization, Accounting and Billing concepts so that users 
can be granted access to copyrighted material according to relevant billing 
concepts and schemes.  
For this purpose the client should be able to authenticate with the IMS core. 
This implies support for authentication algorithms such as MD5, AKAv1-MD5, 
or AKAv2-MD5. Additionally, Quality-Of-Protection (“qop”) should include 
integrity protection (“auth-int”) as well. 
Depending on the execution environment of the client and its relevant 
capabilities, charging for services can be more easily integrated through IMS 
procedures with already established mobile phone-related charging procedures 
and fee collection mechanisms. Such an aspect is expected to achieve better 
user penetration since no new contracts and procedures are required.  

6.1.2 IMS Session Management  

The client should be able to identify all SIP requests that are routed to it and 
translate properly any kind of SIP responses relating to its own requests. 
Incoming requests should be treated according to their meaning for the 
creation of new SIP dialogs or the modifications of existing ones. Similarly, 
user wishes reflected on actions on the UI should be captured and translated 
into relevant SIP signalling affecting any existing SIP dialogs or creating new 
ones.  
The client being a SIP User Agent should support standard SIP methods such 
as SIP Instant Messages, Voice and Video calls and also handling of Presence 
Notifications corresponding to Presence subscriptions initiated by the client.  
Messaging can also be enriched with metadata enhancements so that the client 
can provide added-value application content.  



Deliverable D2.3: Detailed client adaptations specification    

 

Page 10 of 64 

Presence capabilities can be also exploited to support especially SIP based 
content discovery. 

6.1.3 Session Negotiation and Setup  

Once a client is registered with the IMS it will be able to establish IMS/SIP 
sessions in order to initiate certain P2P functions. The session negotiation 
mechanisms (SDP) that are already used for the establishment of standard SIP 
sessions can be enriched and utilised so that apart from access control, certain 
aspects relating to access network conditions and client environment can be 
catered for prior to initiating P2P interactions. Such negotiation can better 
communicate any restrictions arising from the nature of the client’s 
environment so that optimal management of network resources can take 
place. Additionally, relevant information can be injected into the underlying 
P2P operation (scheduling, etc) so that clients can receive the best of the P2P 
network avoiding any resources to be reserved for them in case these cannot 
be actually taken advantage of. Similarly, session management can better 
identify the P2P capabilities of the client so that its contribution to the P2P 
operation can be safely evaluated.  
Moreover, bandwidth requirements can be communicated so that specific 
network resource management can be put in effect. Furthermore, any 
modification in these requirements should be imminently renegotiated and 
alterations should quickly be applied for the proper continuation of the service. 

6.1.4 Management of Network Limitations and Restrictions 

SIP techniques with respect to Firewall and NAT traversal should be supported 
by the client so that its operation remains unimpeded even in network 
configurations that involve private addressing and connection screening. The 
client should consider the 3GPP IPSec secured environment without NAT and 
the ETSI TISPAN NAT’ed environment using UDP encapsulation over IPSec. 
Media proxying should remain an option in link setup when there is no other 
alternative in data session setup. 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 11 of 64 

 

6.2 P2P related Functions 
An overlay network is generally considered to be an application-level network, 
which operates in an autonomous and decentralised way. The Vital++ concept 
envisages a hybrid IMS-P2P client that combines the trust, security and 
accounting mechanism of IMS with the scalability and fault-tolerance 
associated with P2P applications. Key to achieving this is the creation of an 
architecture permitting the construction and manipulation of P2P overlay 
networks that are suitable for a range of Vital++ platform features including  
 
• Distributed information database and queries;  
• Real time delivery of audio and video; 
• Multimedia content broadcast; 
• File sharing. 
 
The development of a distributed database will focus on the creation of a 
hybrid architecture where all participating peers will enter a DHT in order to 
have scalable queries. We will use a centralized architecture that will manage 
the information in the DHT in order to increase reliability. Additionally, we 
suggest the creation of multiple overlay and scheduler architectures as the 
demands placed on it by file sharing, involving bursts of lookups and packet 
transfers, can be very different from isochronous stream delivery. 
However, the set of functionalities that P2P overlays will address has to be 
defined analytically: 
 
• Registration and de-registration of nodes within the network known in P2P 

terminology and joining/leaving 
• Addition/removal of content to/from the network 
• Addition/removal of metadata to/from the network 
• Location of content within the network 
• Routing of messages through the network 
• Exchange of neighbours in the overlay for the adaptation of it to the 

network. 
• Retrieval of content through block exchanges. 
 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 12 of 64 

Answering basic requirements, other features have been added for non-
functional reasons such as security, scalability, high resource utilization, 
stability in terms of dynamic network conditions, stability in terms of user 
behaviour and fault tolerance: 
 
• Peer node and content identification mechanisms 
• Encryption of overlay messages and content 
• Protection and optimisation of network performance to handle particular 

operational or application requirements. (e.g. high user churn, network 
resources) 

• Efficient broadcast of messages throughout the network (e.g. the 
availability of a new “super” peer) 

 
An abstract architecture of the interdependent layers within a P2P Overlay has 
been identified by Lua [et al.] in 2005.1  

 

 
Figure 1: Interdependent Layers within a P2P Overlay 

                                    
1 Eng Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and comparison of peer-to-peer overlay network schemes,” 

Communications Surveys & Tutorials, IEEE,  vol. 7, 2005, pp. 72-93. 

 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 13 of 64 

The Network Communications layer describes the network characteristics of 
desktop machines connected over the Internet or small wireless or sensor-
based devices that are connected in an ad-hoc manner. The dynamic nature of 
peers poses challenges in the communication paradigm.  
The Overlay Nodes Management layer covers the management of peers which 
includes discovery of peers and routing algorithms for optimization.  
The Features Management layer deals with the security, reliability, fault 
resiliency, and aggregated resource availability aspects of maintaining the 
robustness of P2P systems.  
The Services-specific layer supports the underlying P2P infrastructure and the 
application-specific components through scheduling of parallel and 
computation-intensive tasks, content and file management. Meta-data 
describes the content stored across the P2P peers and the location information.  
The Application-level layer is concerned with tools, applications, and services 
that are implemented with specific functionalities on top of the underlying P2P 
overlay infrastructure. Thus, there are two classes of P2P overlay networks 
towards the development of distributed and scalable query mechanisms : 
Structured and Unstructured.  
In Unstructured P2P, the overlay networks organize peers in a random graph in 
a flat or hierarchical manner (e.g., Super-Peers layer) and use flooding or 
random walks or expanding-ring Time-To-Live (TTL) search, etc. on the graph 
to query content stored by overlay peers. Each peer visited will evaluate the 
query locally against its own content, and will support complex queries. This is 
inefficient because queries for content that are not widely replicated must be 
sent to a large fraction of peers, and there is no coupling between topology 
and data items’ location. Examples of Unstructured P2P overlay networks 
include Freenet, Gnutella, FastTrack/KaZaA, BitTorrent, and 
Overnet/eDonkey2000.  
Structured means that the P2P overlay network topology is tightly controlled 
and content is placed not at random peers but at specified locations that will 
make subsequent queries more efficient. Such structured P2P systems use the 
Distributed Hash Table (DHT) as a substrate, in which data object (or value) 
location information is placed deterministically, at the peers with identifiers 
corresponding to the data object’s unique key. Implementations of structured 
P2P overlays include: Content Addressable Network (CAN), Tapestry, Chord, 
Pastry, Kademlia, and Viceroy.  
DHT-based systems are based on the consistent assignment of uniform 
random NodeIDs to the set of peers into a large space of identifiers. Data 
objects are assigned unique identifiers called keys, chosen from the same 
identifier space. Keys are mapped by the overlay network protocol to a unique 
live peer in the overlay network. The P2P overlay networks support the 
scalable storage and retrieval of {key,value} pairs on the overlay network, 
Given a key, a store operation (put(key,value)) lookup retrieval operation 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 14 of 64 

(value=get(key)) can be invoked to store and retrieve the data object 
corresponding to the key, which involves routing requests to the corresponding 
peer. 

6.2.1 P2P Distributed Queries and DHT Overlay  

Searching on an unstructured P2P overlay is most commonly done using 
techniques such as Flooding, Random Walks or expanding-ring Time-To-Live 
(TTL). The most common query method is flooding where a peer when 
performing a search queries its neighbours within a certain radius for the 
object required. While Flooding and Random Walks and their variants are 
effective in locating popular material in unstructured networks they are not 
overly efficient. In fact, studies have shown2

Several approaches have been tried to improve search recall. One approach 
was to increase the Time-To-Live (TTL) for search algorithms. However, a 
higher TTL value caused a significant increase in the consumption of overall 
bandwidth and provided diminishing returns, particularly in the case of search 
techniques such as flooding. An alternative technique employed was to 
replicate objects to increase the likelihood of a successful search. This method 
requires that entire objects are replicated, thereby significantly increasing the 
bandwidth and storage costs and as a result limiting their applicability. A 
further refinement to the idea of replication is Index Replication.  In one-hop 
index replication, each node stores its meta-data, data pertaining to the nodes 
resources, on all of its one hop neighbours. This has been found to be an 
extremely valuable technique in scaling unstructured networks

 that in the Gnutella Network 
almost 18% of searches return no responses even though results are available. 

3. 
 

 Structured Unstructured 

Query Type Key Lookup Arbitrary 

Query Cost O(log(N)) O(N) 

Hit Guarantee High Low 

Connectivity Graph Structured Random 

Table 1: Structured vs. Unstructured P2P Networks 

There is also a hybrid approach employed by some unstructured networks to 
improve the search for rare objects. The idea is to identify rare objects and 
place them in a structured network to improve the chances of lookup and keep 

                                    
2 Loo, B. T. et al, Enhancing p2p file sharing with an internet-scale query processor 
3 Chawathe, Y. et al, Making gnutella-like p2p systems scalable 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 15 of 64 

the unstructured network for the more popular objects. This method is 
effective but does have the associated costs of deploying and maintaining a 
new overlay network. 
In structured P2P networks the network topology is controlled and content is 
placed in specified locations so that subsequent queries are more efficient. A 
distributed hash table (DHT) is used to deterministically place values, which 
equate to location information, at peers whose identifiers correspond to the 
data object’s unique key. The use of a DHT allows a group of distributed hosts 
to collectively manage a mapping of (key, value) pairs without the need for a 
fixed hierarchy and with little or no direct human interaction. The 
characteristics of the DHT are decentralization, scalability and fault tolerance. 
Any participating node should be able to efficiently retrieve the value 
associated with a key.  
Chord, for example, assumes a circular identifier space of size N. A Chord 
node with identifier u has a pointer to the first node following it clockwise on 
the identifier space as well as the first node preceding it forming a doubly 
linked list. The node also keeps log2(N) pointers called fingers to other nodes.  
Tapestry on the other-hand uses a Plaxton mesh as its basis. Tapestry uses 
multiple roots for each data object thereby avoiding a single point of failure. In 
a Plaxton mesh, peers can be servers, routers and clients.  This data structure 
allows messages to locate objects and route to them across an arbitrarily-sized 
network, while using a small constant-sized routing map at each hop and 
therefore provides a scalable mechanism for accessing nearby copies of 
objects. In an n-node Plaxton mesh, both objects and nodes have randomly 
chosen labels of size log n bits independent of their location and semantic 
properties. 
When comparing the Chord and Tapestry protocols, the major advantage that 
Tapestry has over Chord is that the network topology is known through the use 
of network locality. Therefore, queries never travel more than the network 
distance required to reach them. However, scalability can be an issue with 
Tapestry as it does not handle churn as well as Chord as it is more 
complicated. Tapestry routing tables need to updated, which is an expensive 
operation whenever a node joins or leaves the network. 
If the appropriate security policies are not in place problems can occur in 
within DHTs. A malicious node could potentially examine, drop or manipulate 
messages as they pass through the node. The ability of untrustworthy nodes to 
inject unsolicited messages or manipulate legitimate messages means that the 
routing tables of other nodes can be corrupted. To avoid such problems it is 
necessary that some security mechanism is put in place to exclude or manage 
these untrustworthy nodes. 
To protect the content delivered over the P2P network from unauthorized 
access a Digital Rights Management (DRM) system is required. OMA DRM 
defines a means by which to deliver copyrighted content and ensure that the 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 16 of 64 

content can only be used with an appropriate license. A content issuer shall 
deliver DRM content and a rights issuer generates a Rights Object. This Rights 
Object governs how the DRM content may be used. Specifically, it is an XML 
document which outlines the permissions and constraints associated with a 
piece of DRM content.  
The DRM content cannot be used without an associated Rights Object. OMA 
DRM makes a logical separation of the content and the Rights Object. By doing 
this a user can download the content and the rights object possibly within the 
same transaction and begin to use the restricted content. Later if the Rights 
Object expires the user can request a new Rights Object without having to 
download the content again. The enforcement of the rights of the restricted 
content has to occur at the point of consumption using what is known as a 
DRM Agent. A Rights Object is cryptographically bound to a specific DRM 
Agent, so only that DRM Agent can access it. Since DRM content can only be 
accessed by a valid Rights Object this allows content to be super-distributed, 
i.e. content can be freely passed amongst users as content is not accessible 
without a valid Rights Object. It is also possible to bind the Rights Object to a 
group of DRM Agents known as a domain. This would allow a user to download 
content which would be accessible on their phone, netbook, etc. 
The OMA DRM specifications define the format and the protection mechanism 
for DRM Content, the format and the protection mechanism for the Rights 
Object, and the security model for management of encryption keys. The OMA 
DRM specifications also define how DRM Content and Rights Objects may be 
transported to Devices using a range of transport mechanisms, including pull 
(HTTP Pull, OMA Download), push (WAP Push, MMS) and streaming. 

6.2.1.1 Overlay Construction Requirements for Vital++ P2P 
distributed queries  

• Popular content should be retrievable quickly and rare content should be 
available within predicted time (by the use of a structured DHT based 
overlay with a replication technique for popular content) 

• Vital++ management information may be stored in the overlay. 
Management information access times should be predictable (i.e. use DHT). 

• Content should be replicated for fault-tolerance (consider TAPESTRY-like 
architecture and the use of the VITAL++ centralized database) 

• Compatibility with centralised content authorisation nodes as specified in 
IMS-IPTV and DRM systems 

6.2.2 P2P Content Diffusion Overlay 

Peer-to-Peer (P2P) live streaming is a heavily researched topic that faces a 
series of challenges originating both from the diversity of behaviours and 
capabilities of the participating peers combined with the strict delivery 
requirements of streaming applications. In general terms, an application server 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 17 of 64 

generates a video/audio stream at the appropriate service rate divided into 
blocks, which are delivered to the overlay. Peers in the overlay then exchange 
the blocks with their neighbours until all peers eventually receive all blocks. In 
this context a requirement to be met is that the average uploading bandwidth 
capability of the whole system must always be kept above the service rate in 
order to successfully deliver the stream while each one of the generated blocks 
must be timely delivered to every peer. 
In addition, peers involved in these systems have heterogeneous and dynamic 
uploading bandwidth capabilities. When combined with the characteristics of 
the topology of the underlying network and the dynamic traffic conditions, e.g. 
latency, they create a volatile and complex environment for P2P live streaming 
delivery. These factors heavily influence the efficiency of a P2P system 
measured by a number of key performance indicators.  
The first factor is the uploading bandwidth utilization that corresponds to the 
ability of the system to exploit as much as possible the sum of the uploading 
bandwidth of the participating peers that is noted as aggregate uploading 
bandwidth of the system. When a peer is not able to fully utilize its uploading 
bandwidth capabilities this creates a bandwidth bottleneck in the system. 
Equally important is the setup time defined as the time interval between the 
generation of a block from the origin server and its delivery to the “last” peer 
in the system.  
Furthermore, a P2P live streaming system has to remain stable in such an 
environment especially in the presence of frequent peer arrivals and 
departures. This results in varying numbers of peers which influences the 
stability of the system with respect to the uninterrupted delivery of the 
streaming service. 
Finally, fairness among nodes indicates the ability of the system to 
continuously distribute uniformly the aggregate uploading bandwidth to the 
participating peers. This ability ensures that even in conditions where 
aggregate uploading bandwidth is insufficient for the delivery of the whole 
video stream, every peer will acquire a percentage of blocks above a critical 
threshold for an “affordable” video playback. . 
A pioneer work of the first kind is SplitStream. SplitStream proposes as overlay 
a formation of trees whereby each node is leaf in every tree but one. These 
trees are maintained by mechanisms of a DHT called Pastry. Blocks are 
uniformly assigned to a number of stripes equal to the number of trees. Each 
tree distributes one stripe by sequentially propagating each one of its blocks 
from the parent to its children. In SplitStream the overlay is organized 
according to IDs assigned to each node and not according to network or node 
features. In this way it is not possible to achieve high uploading bandwidth 
utilization because the diffusion of each stripe is done according to the IDs of 
each node in the overlay. In contrast, this leads to fast block propagation 
through each tree with low control overhead. Nevertheless, the system suffers 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 18 of 64 

from a lack of stability and a resultant degradation of stream quality under 
dynamic conditions like frequent peer departures.  
The limitations of tree-based overlays were overcome with the introduction of 
random mesh overlays where blocks are again assigned to stripes. However, 
there is no predefined graph topology and each stripe could be exchanged 
between any two nodes according to the sender’s uploading bandwidth 
capabilities. In this system a mesh overlay is constructed wherein nodes have 
equal numbers of neighbours. Stripe reassignment, due to node arrivals, 
departures or bandwidth changes, takes place with the help of a decision 
function. The authors demonstrate in their original work that under static 
conditions, limited heterogeneity and sufficient uploading bandwidth 
capabilities among peers, their system achieves a relatively high degree of 
bandwidth utilization and low setup time. On the other hand, the randomness 
of the formed mesh leads to a bandwidth bottleneck in highly heterogeneous 
environments. Finally, the cases where aggregate uploading bandwidth is 
insufficient or the total number of participating peers fluctuates are not 
evaluated. 
We will focus on an overlay with a graph topology where peers with highly 
heterogeneous upload capabilities are able to fully utilize their upload 
bandwidth. Additionally, according to measurements from the underlying 
network (ex. Network latency), peers will be able to dynamically and 
cooperatively adapt the flows for the distribution of each object according to 
the traffic conditions in the underlying network. A functionality that will be 
used for the reorganization of the overlay (the list of neighbours that each peer 
has each time instant) will ensure a stable rate in block reception for each peer 
during dynamic peer arrivals and departures. 
Fair aggregate upload bandwidth distribution is very important for complete 
video stream distribution in case of sufficient available upload bandwidth and 
even much more important in case of insufficient available upload bandwidth 
where every node has to receive a percentage of blocks above a threshold in 
order to playback the video stream even with depredated quality. Towards this 
goal we again highlight the significance of a well connected and optimized 
overlay in which every node participates in the distribution of the stream in a 
degree analogous to its upload capabilities. Furthermore, all the participating 
peers should be able to obtain the whole stream, or at least the same 
percentage of the stream with every other node. For this reason, when a node 
is ready to transmit a new block, it should prefer as its next node for 
transmission its most deprived neighbour, meaning the neighbour who has the 
smallest number of blocks. 

6.2.3 P2P Scheduling 

P2P block scheduling in content distribution is a technical problem that has 
been more or less addressed. In Chapter 7.4.2.3 we describe in more detail 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 19 of 64 

the main principles how in p2p content distribution systems are able to address 
this technical challenge.  
Content distribution is not a real time application and so it invokes flexible 
decisions on the distribution of blocks in terms of the variance in the rate at 
which each peer takes blocks. Additionally, in content distribution we don’t 
have to deliver the blocks with a specific order but according to the needs of 
the scheduler in order to avoid a content bottleneck. Eventually, a node with 
vast upload bandwidth can upload blocks at a very high rate to any peer.  
In contrast to that, in live streaming each time instant only a small number of 
blocks are available to be exchanged in the overlay. This is due to the real time 
production and distribution of video and/or audio. This constraints the 
scheduler and requires a sophisticated neighbour selection and block selection 
in order to have high upload bandwidth utilization by avoiding bandwidth 
bottleneck and content bottleneck. Bandwidth bottleneck is a condition where a 
node has many blocks to upload to its neighbours but it does not have the 
required bandwidth available. Content bottleneck is the situation where a node 
has available upload bandwidth but has no blocks to exchange with its 
neighbours. 
Fair aggregate upload bandwidth distribution is very important for complete 
video stream distribution in case of sufficient available upload bandwidth and 
also much more important in case of insufficient available upload bandwidth 
where every node has to receive a percentage of blocks above a threshold in 
order to playback the video stream even with depredated quality. Towards this 
goal we again highlight the significance of a well connected and optimized 
overlay in which every node participates in the distribution of the stream in a 
degree analogous to its upload capabilities. Furthermore, all the participating 
peers should be able to obtain the whole stream, or at least the same 
percentage of the stream with every other node. For this reason, when a node 
is ready to transmit a new block, it should prefer as its next node for 
transmission its most deprived neighbour, meaning the neighbour who has the 
least blocks compared to the others. This parameter combined with the 
preference for nodes with high upload capacities dictates the form of the 
decision function running in each node for selecting the next node for block 
transmission. 
Finally, a successful streaming system should be able to dynamically adapt to 
the various underlying network changes and to nodes arrivals and departures. 
For this reason an algorithm is needed that will run in every node and that 
would be responsible for recognizing those changes and dynamically 
reconfigure the overlay graph accordingly. Additionally, the real time decisions 
of the scheduler and the locality aware overlay lead to a system that adapts 
very fast to dynamic conditions. 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 20 of 64 

6.2.4 Overlay Optimisation & QoS Management  

Much research has been carried out into optimising the performance of 
structured and unstructured P2P overlays to meet particular application 
requirements, generally non-functional.  Examples include the TAPESTRY 
modifications of the basic PASTRY architecture and the super-peer 
modifications to Gnutella to reduce query traffic exponentiation. Some of this 
work is passive and involves improvement of the underlying content location 
algorithm for performance, scalability or fault-tolerance purposes.  
Additionally, active measures to monitor and react to network conditions have 
also been proposed and developed. An example is the Vivaldi4

The intention of the Vital++ project is to focus on optimising a P2P approach to 
live streaming. To achieve this, we will also consider the work of the P2P-Next 
project

 virtual 
positioning system developed for the Azureus BitTorrent client. The intention of 
overlay positioning systems is to determine the relative logical positions 
between clients in order to optimise DHT searches.  

5

6.2.4.1 Vital++ P2P Overlay Optimisation & QoS Requirements 

 which has developed the SwarmPlayer client. We will optimize the 
overlay performance which involves development of an efficient and reliable 
new overlay mechanism for distribution of live streaming content.  
As the Vital++ client is an IMS client, it is also possible to reserve bandwidth 
using IMS mechanisms. The IMS Access Network is aware of the QoS 
requirements of streams setup using IMS signalling by analysing the SIP 
signalling used to setup and manipulate these streams. This signalling supports 
“hints” regarding application expectations in the form of IMS Communication 
Service Identifiers (CSI’s). A Vital++ client that finds the P2P overlay is unable 
to support its QoS requirements may use the IMS to explicitly reserve QoS.  

 
• Support for instrumentation of overlay communications to enable debugging 

or analysis of network performance. (Probably use Overlay Weaver); 
• Support for virtual position of overlay nodes; 
• Overlay awareness and optimisation using IMS QoS reservation 

mechanisms.  
• P2P Streaming. Discover peers and interchange media information. 
• P2P FileSharing. Discover peers and interchange media information. 
• P2P Secure DHT for VITAL++ Management information (e.g. Content index, 

Content overlay index, PKI information) 
• P2P Overlay Management (Process/Perform Join/Leave) 

                                    
4 VivaldiView, Azuereus Wiki, http://azureuswiki.com/index.php/Vivaldi_View  
5 P2P Next, Shaping the Next Generation of Internet TV, http://www.p2p-next.org/  

http://azureuswiki.com/index.php/Vivaldi_View�
http://www.p2p-next.org/�


 Deliverable D2.3: Detailed client adaptations specification  

 

Page 21 of 64 

• P2P Overlay construction for all envisaged Overlay types (Live streaming, 
VoD-streaming, file sharing, secure DHT) 

• QoS Management. As it is not yet defined how content security is going to 
be achieved yet, two approaches are presented. 

o Achieve required bandwidth by choosing appropriate peers for media 
delivery (P2P approach) 

o Reserve required bandwidth by setting up an NGN session with other 
peers (NGN approach) 

The QoS Management also has to measure the actual used bandwidth and 
existing latency in order to decide whether to change paths or use NGN QoS. 

6.2.5 Modularity of Design & Implementation 

The Vital++ P2P Overlay should fulfil some requirements with regard to 
modularity: 
• Support for common data model shared between overlay instantiations with 

common identifiers (or mappings) for overlay subscribers, node identifiers 
and content identifiers.  

• Modular interfaces for Common Overlay functionality similar to, or using, 
Overlay Weaver.6

• A plug-in architecture for overlays enabling new and innovative overlays 
implementations to be added to Vital++ nodes. These new overlays may be 
implemented to provide support for specific Vital++ scenarios.  

  

 
Dabek et al. proposed layered abstractions of structured overlays.7 They 
separated common services such as DHT, multicast, and anycast from an 
underlying routing layer. The model suggested by Dabek enables separated 
design and implementation of a routing layer named Key-Based Routing (KBR) 
from the common higher-level services. Here, the routing layer is monolithic 
even with layered abstractions. However, the routing algorithm is not the only 
element in the routing layer. Shudo et al.8

                                    
6 Overlay Weaver: an overlay construction toolkit, Available from: 

 identified common process elements 
that could be abstracted for a variety of P2P overlays. They have decoupled 
these process elements into a commonly used P2P Overlay development toolkit 
known as Overlay Weaver.   
Overlay Weaver is implemented in Java and comes with a selection of 
structured DHT-based overlay implementations to demonstrate the system’s 
modularity and flexibility. 

http://overlayweaver.sourceforge.net .  
7 Dabek F., Zhao B., Druschel P., [et al.], Towards a common API for structured peer-to-peer overlays, in: Proc. IPTPS’03, 2003.  
8 Shudo K. [et al.], Overlay Weaver – An Overlay Construction Toolkit, Communication Communications 31 (2008) pp 
402-412.  

http://overlayweaver.sourceforge.net/�


Deliverable D2.3: Detailed client adaptations specification    

 

Page 22 of 64 

  

 
 

Figure 2: Overlay Weaver architecture 

The design permits a P2P overlay developer to mix different overlays using a 
common communications process layer. This is a very powerful approach as 
the designer may incorporate different overlays into their P2P network design 
depending on application requirements. The common application programming 
interface means that abstract objects like RoutingContext, ID & route hide 
much of the complexity of the underlying overlay from the service layer 
developer. This is a requirement we have already identified for Vital++.  

6.3 Content related Functions 
Content retrieval is probably the most crucial feature for the VITAL++ client. 
All other required content related functionalities are related with distributing 
and managing the respective content. 
In the case of multimedia content in the VoD and Live-TV cases, the problem 
of real time and quality emerges as an extra requirement that the file sharing 
case does not contain. 
The following functionalities are required to enable the envisaged use case 
scenarios: 

6.3.1 Audio/Video Capturing and Play-out 

The audio and video contents that need to be distributed to the users may 
exist as files stored on a multimedia server or as an audio/video signal created 
by a live content producer. If the content is already stored, there is no relevant 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 23 of 64 

inconvenience, but in the Live-TV case in which the content is fed in real time, 
the platform must capture it and convert it to the formats that different users 
will be able to consume on their various devices.  
After capturing and transcoding tasks, the content must be introduced to the 
media delivery platform in order to distribute it to the audience. The P2P 
overlay network will be in charge of this circulation of the content, assuring 
that all the pieces arrive at the client so that it will be able to rebuild the 
multimedia flow and consume it. 
On a P2P distribution network, the segments of the content might arrive in a 
wrong order or could be lost, so the Vital++ client must be capable of 
receiving an appropriately sized buffer of data to present it to the user. 

6.3.2 Graphical User Interface (GUI) 

Like any kind of service, the user needs an infrastructure to interact with the 
system that offers it. This graphical user interface (GUI) helps the consumers 
to order what they want or what they expect from the service. 
This interface should be able to run on every category of equipment that will 
be used in the envisaged scenarios and should be easy to use. Some 
functionalities that the user will be able to perform through this graphical 
interface will be 

• Searching interface where a user will be able to locate files and/or 
objects that will be categorized. 

• Query system where users will be able to locate objects that match with 
a keyword that they have entered  

• Volume control  
• Search functionalities during video and audio streaming. 
• Selection of video quality. 

6.3.3 Content Security Measures  

In a P2P distribution model in which anyone could take data from other users, 
security is an important factor. To address the content security issue, VITAL++ 
might use a rights table, which allows/denies access to a specific content 
overlay. 
In this solution, each peer of the content overlay needs to contact this table to 
know if the other peers that request its pieces of content have the right to 
consume it or not. This system needs a new module of security that interacts 
with this table very frequently. 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 24 of 64 

6.3.4 Content Management  

This content related function will have to manage all known content in terms of 
locations, access methods and media type. A client must know which content is 
available in the P2P overlay network and approximately on how many users 
and which its characteristics are. 
In the P2P philosophy, the content in circulation is divided into blocks and is 
distributed all around the network. These blocks are present in all the peers so 
it must identify whether a block should be requested from a centralized server 
to acquire it or it is present in the overlay. 

6.3.5 Content Discovery and Advertisement 

The client must be able to browse a content index for resources, which could 
then be made available to the content management facility to let the user 
consume it. The content index should support both browsing and searching for 
content based on keywords.  By “content index” we mean meta-data about the 
content such as a textual description, encoding scheme, popularity and other 
information pertinent to Vital++ applications. Additionally, the index would 
store an identifier, which may be used to retrieve the content from the overlay. 
Several P2P clients have suggested using or adopted the magnet URN scheme.  
There are several ways a content index could be created. One is to store 
content descriptors in a database, be it object, relational or XML. Another 
possibility is to use an Open Source content indexing engine such as Apache 
Lucene which searches for text strings in much the same manner as Google 
search does.  As Lucene can be adapted to index particular formats (e.g. an 
XML descriptor for multimedia content), both database and search engine 
approaches can be used satisfactorily with structured content.  
To reduce dependence on a bespoke indexing or content searching solution, 
content descriptions may be made available using an accepted syndication 
format such as RSS 2.0.  
There should be a way to provide a list of available contents to the user who is 
interested in consuming multimedia resources. This list either could be given 
by the application server of the service or a DHT overlay could be built to give 
the users the option to find which contents are being distributed over the P2P 
network. In this second possibility, a module with content discovery 
capabilities must be developed. 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 25 of 64 

7 VITAL++ Generic Client Architecture  

7.1 Module Architecture Overview 
The architecture of a generic P2P and IMS client could look like depicted in the 
following figure. The architecture of the client identifies three layers: 
User Interaction Layer:  It is the part of the client that interacts with the 

user. It provides all media playback and 
capturing capabilities as well as means for 
discovering and publishing content. 

Protocols Layer: It contains in self contained modules SIP and 
P2P engines as well as a local storage engine. 
The capabilities in this layer enable the client to 
cope with the specific requirements for joining 
the various networks as well as to manage 
locally stored content. 

Network Layer: It is the raw connection part not necessarily 
addressed by client developments. It can be 
provided by the underlying resources of the 
hosting Operating System. 

 

 
Figure 3: Possible Generic Client Architecture 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 26 of 64 

7.1.1 User Interaction Layer 

The User Interaction Layer holds all functional blocks which communicate 
directly with the user. These are the  
• Graphical User Interface for interacting in terms of functional behaviour of 

the client. 
• Browser for presentation of contents. 
• Module for audio capturing and play-out, e.g. to realize voice calls or music 

playback. 
• Video capturing, which basically reads either from a camera (interactive 

case) or from a file (preinstalled media case). 
• Video play-out for video calls or simple video stream playback. 

7.1.2 Protocols Layer 

The Protocols Layer holds the protocol engines, which are used to 
communicate with other resources such as peers, the IMS core and its 
components. In this case the protocol engines are 
• A protocol stack for content distribution based on P2P which is used for 

realizing the DHT and can be used to set media overlays. This contains the 
P2P logic with an abstract view of the communication procedures so that 
these can be provided either by standard TCP communications or by 
SIP/IMS procedures. 

• The IMS and SIP layers can be used without P2P capabilities.  
• A basic SIP stack for the basic SIP operations. 
• An IMS-SIP extension, which reflects the 3GPP changes and extensions to 

the basic SIP.  
• A File System Engine that copes with the management of the locally stored 

content. Again this engine is agnostic of the underlying communication 
module and can interact with the P2P modules to cater for content sharing. 

• A list of providers that bind together the previous modules to instantiate the 
Vital++ logic for the provision of the respective scenarios.  

 
The Protocols Layer holds the intelligence between the two other layers. Its 
functionalities can be categorised according to the following scheme: 
• IMS applications 

• Session Management 
This includes creation, maintenance and termination of IMS sessions, 
including bandwidth reservation during session setup 

• Messaging, Presence, Telephony 
These are basic IMS applications. For VITAL++ they are optional. 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 27 of 64 

• P2P applications 
• Streaming 

Realize media streaming between peers, including media splitting 
/recombining and working with multiple sources/destinations. 

• File sharing 
Same function as streaming but for static content. 

• Secure DHT 
Functions for realizing a secure DHT, includes signature checking etc. 

• Overlay management and construction 
Algorithms for topology aware overlay creation for all the overlay types. 

• General functions 
Anything that belongs to the P2P applications and does not fit anywhere 
else or is shared by other P2P application blocks. 

• Content applications 
• Content security 

The structure of this needs to be defined depending on the content 
security model to be negotiated. 

• Content management 
Manage all known content in terms of locations, access methods, storage 
and media type. 

• Content discovery 
Browse a content index for contents, which can then be made available 
to the content management. 

7.2 Underlying Data Models 
Trying to identify the commonalities between P2P and IMS centric systems the 
focus should be on the core architectures and feature sets of both systems. 
Problems occur because unlike IMS, P2P architectures are not standardised. 
They can follow a centralised architecture, a brokered architecture or a 
decentralised architecture. The data models used differ between P2P 
architectures, however there are core concepts such as subscription, 
identification, anonymity, encryption etc. which are common between both IMS 
and P2P. Within IMS there are several places where user profile data is stored: 
the Home Subscriber Server (HSS), the SIP Application Servers, the XCAP 
Data Management Servers, Presence Servers, Generic User Profile Servers and 
Common Profile Stores (LDAP Servers). 
In 3GPP documentation, specifically 3GPP TS 23.002 Network Architecture, the 
HSS is described as follows:  
 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 28 of 64 

"The HSS is the master database for a given user. It is the entity 
containing the subscription-related information to support the 
network entities actually handling calls/sessions. A Home Network 
may contain one or several HSSs: it depends on the number of 
mobile subscribers, on the capacity of the equipment and on the 
organisation of the network. As an example, the HSS provides 
support to the call control servers in order to complete the 
routing/roaming procedures by solving authentication, authorisation, 
naming/addressing resolution, location dependencies, etc." 

 
Figure 4: Permanent Subscriber Data from 3Gdb Home Subscriber Server (HSS) 

Therefore the HSS is a mission critical database which stores all the user 
centric data which is required by the IMS core network. Therefore, the HSS 
stores the following types of information: 
 

 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 29 of 64 

• subscription 
• identification 
• numbering 
• registration 
• authentication 
• ciphering 
• service profile 
 
However, the storage method employed and the specifics of the HSS schema 
are determined by the vendor who supplied the HSS. There is also the sh 
interface between the HSS and the SIP application server. This interface is 
based on Diameter and is used to access user data stored in the HSS or even 
storing application data in the HSS and is agnostic with regards to this data. 
The IMS architecture allows for a SIP Application Server (SIP AS) to store its 
own user data. This data supports the services supported by the SIP AS. This 
is the Ut Interface and is based on XCAP (XML Configuration Access Protocol) 
which allows a client to read, write and modify application configuration data, 
stored in XML format on a server. XCAP is not a new protocol. XCAP maps XML 
document sub-trees and element attributes to HTTP URIs, so that these 
components can be directly accessed by HTTP. This means that user service 
data is located with the services that use it. 
Another XCAP based data repository within IMS is the XCAP Data Management 
Servers (XDMS) which is an architecture defined by the Open Mobile Alliance 
(OMA). The purpose of the XDMS is to store common data between different 
services and enablers and also to store specific data for each of those data and 
services; 
Presence can also be considered as a user data store as the presence server 
stores information about the user which the user can manage on a service to 
service basis. 
The Generic User Profile (GUP) is a 3GPP standard which defines a user centric 
data repository and provisioning architecture. It does this through the GUP 
Server (GUPS) which is the key element in the architecture. The GUPS 
provides metadata which contains the knowledge of the location of the 
different data components and the different data repositories. In essence, it is 
a virtual centralised database which enables homogeneous access to the user 
data stored in the various network databases and application servers. The 
GUPS also acts as a gatekeeper by authorising or denying access to profile 
data. The GUP interfaces are based on SOAP/XML and are generic, hence 
independent of the GUP application data model deployed. A change to the GUP 
application data model, due to the introduction of new services for example, 
has no impact on the northbound interface. On its southbound interface (Rp), 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 30 of 64 

it connects to the main data repositories, e.g. the SLF, the IM-HSS, the AS, the 
HLR/AuC, the PDBF, etc., also via the standard SOAP/XML interface.  
The Common Profile Store (CPS) is also known as the Next Generation Profile 
Register (NGPR). The purpose of the CPS is to change from the monolithic 
database structures of the existing network databases (e.g. the HLR, HSS, 
etc.) to a multi-tiered architecture. Using CPS will allow for the optimisation 
and rationalisation of network databases thereby removing the lock-in from 
vendor specific implementations of the various network databases. Within the 
context of IMS, a CPS architecture would remove the need for Sh interface 
between the HSS and the HLR by permitting user data sharing through access 
to the common back end. The CPS could also be integrated with other 
platforms such as JEE or JAIN SLEE allowing the user data to be used by 
services deployed on these platforms. 
As mentioned in the first paragraph of this section there is no single 
architecture employed within peer-to-peer systems. For example take the use 
case of search within P2P. Some architectures use a centralised searching 
mechanism such as Napster, others like Gnutella use flooding, while other 
again use a strategy like distributed hash tables. Others again, such as Skype, 
use a Distributed Hash Table (DHT). 
Napster contains a central indexing server which when a user searches for a 
particular resource the Napster central server returns a list of all nodes on the 
network which have that resource. The user then selects the node they wish to 
download from.  
Gnutella, however, does not have a central repository. Instead, Gnutella floods 
the network with the search for the required resource. The user’s Gnutella 
client knows of at least one other node somewhere on the network. The user’s 
machine sends the request to the known nodes. These known nodes then 
search for the required resource on their local storage. As well as searching for 
the resource locally, the nodes forward the request onto the nodes known to 
them. And the process repeats until the Time To Live (TTL) for the request 
expires. The disadvantage with this system is that there is no guarantee that 
the file you want is on any of the nodes which have been queried before the 
TTL expires. Searches can also take quite a while to complete until all 
responses come in. As the user’s machine is also a node on this network their 
bandwidth and system resources are being consumed in the background to 
fulfil requests from other nodes. 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 31 of 64 

 

Issue Problem Possible Solution 

Identity Authentication, malicious 
nodes 

Keys, digital signatures, 
tokens, certificates. 
Possible to integrate with 
IMS AAA 

Presence Not always valid for 
users; indicates online 
clients 

Use presence within IMS 

Agency Proper delegation of 
authority 

Authentication standards 
better in IMS 

Browsing Exposure of local data, a 
risk of intrusion 

Authentication and filters 
are required 

Architecture Unintended exposure of 
local resources 

Firewalls, clear access 
policy 

Protocol A lack of interoperability Open protocols 

Table 2: Security Issues in P2P 

 
When searching in a DHT the user needs to know the exact file name or 
identifier as these identifiers represent keys which are mapped to node-IDs. 
Skype is an example of a DHT employing a super node architecture and 
supports call-establishment and NAT traversal. Skype is a P2P VoIP telephony 
system which encrypts TCP/UDP payloads, thus analysis of Skype is limited. 
When logging in with Skype the client first contacts the bootstrap servers 
trying several different protocols in a certain order: UDP, TCP, HTTP Proxy, 
HTTPS Proxy. Once this is successful a super-peer cache is downloaded and 
stored in the <HostCache> node structure in 'shared.xml' which in Linux based 
systems can be located under ~/.Skype/shared.xml. Once this has been 
completed the login is performed against a centralised login server using TCP. 
When the login is successful the client connects to the super-peer and checks if 
it can be promoted to the level of super-peer. This requires that the client has 
an open IP Address and available bandwidth. This is achieved using Simple 
Traversal of UDP through NATS (STUN) protocol between the peer and either a 
super-peer or one of the bootstrap servers. This is run every time a client 
starts up a Skype session. Skype peers discover users over the super-peer 
overlay using a decentralised User Directory which Skype call the Global Index 
(GI). 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 32 of 64 

“The Global Index (GI) technology is a multi-tiered network where 
super nodes communicate in such a way that every node in the 
network has full knowledge of all available users and resources with 
minimal latency.”9

7.3 General Interface Definition 

 

The merging of Peer-to-Peer technology with the IMS infrastructure will result 
in a client that should be scalable and fault tolerant. This VITAL++ client would 
benefit from the decentralised P2P architecture while it is assisted by IMS 
features such as strong authentication, encryption, auditing and accounting.  
However, as already mentioned in D2.1: The integration of two technologies 
with very different concerns and motivations is not without its problems. IMS is 
realised through a collection of well specified logical nodes with defined 
interfaces and interactions required to achieve basic and advanced network 
functionality such as subscription, registration, session control, roaming and 
access network mediation. These nodes are centralised in a client-server 
architecture as, historically, they have been owned and operated in this fashion 
by network operators. A P2P-IMS involves the distribution of some of these 
nodes towards the edge of the network. In a P2P-IMS content storage, media 
processing and transcoding are all likely to be delegated to peer applications 
running on various mobile devices or set-top boxes.  
In details, the P2P-IMS client will need to inherit basic P2P functionalities for 
content search, content retrieval/distribution, content mixing and IMS 
functionalities such as telephony, media broadcasting and full SIP support. 

                                    
9 Skype P2P telephony explained: http://www.skype.com/help/guides/p2pexplained/ 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 33 of 64 

  

7.3.1 UNI Signalling Interface 

7.3.1.1 Functionality 
The interconnection between the two technologies must take into account 
functionalities such as session setup, management, update etc. More 
specifically, in the session setup the use of SIP within the P2P architecture 
must take into account the centralized nature of SIP while the use of P2P must 
benefit the whole system with a distributed management, provide a constant 
update system between the peers, while maintaining the QoS and 
authentication/authorization capabilities that IMS technology provides. 
The main functionalities that this User Network Interface will provide is: 
• Authentication/authorization Security 
• Session setup & Management 
• QoS Awareness 
• Context advertisement 

7.3.1.2 Protocols 
The requirements for the creation of the VITAL++ client and most specifically 
the protocols needed for the UNI Signalling Interface are presented below: the 
XCAP for the user data management and the necessary extension on the 
IMS/SIP protocol for supporting parallel different media streams, P2P 
authentication, content security, overlay maintenance and content indexing as 
described in D2.2: VITAL++ Trial network description, integration description.  
IMS uses the Session Initiation Protocol (SIP), originally standardized by the 
IETF, as its base signalling protocol. SIP is an internet protocol accommodating 
convergence between the Telco and the internet World. SIP enables signalling 
between different network entities, including endpoints and servers.  
Recently, a number of emerging SIP-based control mark-up languages are 
extending SIP’s capabilities in media server control. The use of this mark-up 
language can provide the necessary background for the interconnection 
between IMS and P2P technology. 
Extensions such as Media Server Control Mark-up language (MSCML), Media 
Sessions Mark-up Language (MSML), Call Control XML (CCXML), Voice XML 
(VXML), Media Server Control (MEDIACTRL), etc. can be the base for the 
interconnection of SIP/IMS based P2P clients, such as the envisaged VITAL++ 
client. 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 34 of 64 

7.3.2 UNI Transport Interface 

7.3.2.1 Functionality 
Three main usage features are supported for the UNI transport interface a) 
content distribution, b) P2P assisted Video on Demand, c) P2P live streaming. 
These three scenarios are analyzed below. 
• Content distribution: A server contains large amounts of data and they 

must be transferred to a vast number of peers. BitTorrent is the most 
widespread implementation of a content distribution mechanism. 

• P2P assisted Video on Demand: The peers that are viewing the 
publisher’s videos also assist in redistributing the videos. Azureus is one of 
the most popular examples. 

• P2P live streaming: A server generates a video stream at a given service 
rate which is then divided into blocks followed by their delivery to a small 
subset among the participating peers. One of the main P2P live streaming 
clients is SopCast. 

 
Because of their different nature and objective, the characteristics demanded 
for each of these scenarios may differ from each other. Moreover, the 
evaluation is needed in order to determine the characteristics and their 
compatibility with the ones specified in the IMS platforms. One of the 
objectives of this document is to shed a light on these aspects.  

7.3.2.2 Protocols 
The Protocols available for the transport part are presented together with the 
audio/video codecs that can be used for the UNI Transport Interface: 
 Transport:  
•  UDP  
•  TCP  
Protocol:  
•  RTP  
•  MSRP  
•  HTTP  
Codec:  
•  Audio: G711, AMR, GSM, MP3, AAC  
•  Video: H263, H264, MPEG2, MPEG4  
 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 35 of 64 

7.4 VITAL++ Client Architectural Components 

7.4.1 IMS related Components 

7.4.1.1 P2P Authentication 
 
Each peer needs to have a solid way of being authenticated to the overall 
system and to integrate with the system. This integration might involve 
communication to other peers and communication to server entities. In all 
forms of those communications, the identity of each peer should be authorized 
so that all involved entities will be able to trust each other. While password 
authentication might seem an adequate solution, the authentication that this 
solution provides is considered very weak. Strong authentication is achieved 
through the use of public key cryptography (digital signatures) and hash 
functions. 
During authentication each peer must be able to reliably verify the identity of 
another peer. This can be realized by asking the other peer to provide some 
credentials proving the authenticity of its identity. Only then can the two peers 
trust each other and exchange data. However, how can a peer be certain that 
it communicates with peers that are what they claim to be? This authenticity 
can be provided by a third party trusted authority known as Certificate 
Authority (CA, see 6.2.1). The role of the certificate authority is to issue 
specific certificates for the identity and characteristics of each peer. In the rest 
of this section we provide an initial solution towards a distributed and fast 
authentication between two peers. It is an important requirement in our 
system as we need the continuous reorganization of the overlay due to peer 
arrivals and departures and also due to the reaction of the content diffusion 
overlay to changes in the underlying network. 
In a strong authentication scheme, each peer has a specific, unchanged 
identification number and a private, public key pair. The public key is not kept 
secret and can be transmitted through the communication channel while the 
private key is kept secret and remains unknown to all other involved entities 
apart from the peer with which it is associated. However, for the peer key pair 
to be valid, a certificate of this key pair must also be addressed to the peer. 
This certificate can be transmitted along with the peer’s public key during 
authentication with other peers so as to verify that the transmitted public key 
is not forged or altered by an eavesdropper performing spoofing or playback 
attack.  
The peer key pair authentication and certification general idea is as follows, 
assuming that peer A has to authenticate its public key with peer B using a 
Certificate authority CA. Note that CA has a public – private key pair itself. 

1. Peer A generates a public-private key pair. 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 36 of 64 

2. Peer A transmits its public key and identification number to the CA and 
asks for verification. 

3. The CA signs peer AA’s identification number and public key with its 
private key and sends the result (certificate) back to peer A 

4. Now, when a request for communication with peer B is required, peer A 
sends along with its public key the certificate provided by the CA. 

5. Peer B, upon receiving peer AA’s certificate, uses the public key of the 
CA to decipher the certificate and to verify that the public key provided 
by peer A is indeed the one that exists inside the certificate and 
therefore is legitimate. 

 
The authenticity of the CA public key can be certified by another CA or can be 
considered trusted by default.  
The certificate authority issues X.509 certificates and is part of an overall 
Public Key Infrastructure (PKI) system that is set on an Authentication Server 
(AS). The PKI system can provide a complete management of public, private 
key pairs for its associated peers. More specifically it is responsible for: 

1. Management of each key pair life cycle  

2. Backup and recovery of keys 

3. Update of key pairs and certificates 

4. Issuing certificates 
Note that the PKI can be enhanced to offer an authorization functionality to the 
system by embedding the authorization rights of a peer into the certificate 
provided to this peer.  
The authentication procedure between peers follows the ITU – T X.509 
Authentication Framework. 
More specifically, assuming that peer A needs to authenticate itself to peer B: 

1. A generates rA, which is a non-repeating number that is used to detect 
replay attacks 

2. A sends B the following: {rA, tA, IDB, A-certificate, A-pub.key, sign Data} 
where tA is a timestamp indicating the expiration time of the transmitted 
message, IDB is the identification number of B, A-pub.key is the public 
key of A and A-certificate is the certificate of A. Finally, sign Data is a 
digital signature of the whole transmitted message needed for data 
integrity.  

3. B verifies the certificate of A by the Certificate authority 

4. B verifies the sign Data and thus the integrity of the sent information 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 37 of 64 

5. B checks that IDB belongs to himself and therefore is the intended 
information receiver 

6. B checks if the timestamp is up-to-date 

7. B checks if rA is replayed 
 
If all goes as planned B repeats the same procedure to authenticate himself to 
peer A and the authentication procedure is concluded.  

7.4.1.2 Digital Rights Management 
 
The way that two peers authenticate doesn’t provide the necessary reliability 
for the exchange of content. The use of Digital Right Management (DRM) will 
result in a reliable system so that the copyright laws are taken into account 
and the necessary trust is achieved in the whole system. In order to 
understand how DRM works and why the authentication of P2P systems does 
not provide the results for a trustworthy environment an example is given:  
The scenario is that BOB encrypts a book and sends it to Alice via an e-mail 
telling her the key to open the file. Alice now has the file and the key in order 
to open the book providing her the ability to redistribute the book to anyone. 
The whole trade presumes that there is trust between Bob an Alice but with 
the use of systems like Gnutella, BitTorrent and the like the word trust is in a 
way eliminated as a preference. The question that arises from the example is 
how can I send the book in a way that Alice will read the content of the book 
but not have the necessary rights to redistribute it? 
Here comes the DRM scenario: Alice will take the book but at the same time 
she will return a piece of identifying information about her computer. This may 
be an identification number of her CPU, a serial number from her hard drive or 
her BIOS. Now when Alice will try to open the file on her computer, the file will 
include the trace of Alice’s unique hardware identification so that the program 
that opens the file will not work if the hardware of the current machine doesn't 
match the hardware ID in the file sent to Alice. 
Nowadays the binding of digital files to a particular piece of hardware is 
common but this binding has obvious drawbacks in a world where every two to 
three years the whole hardware is renewed. In order to create a better solution 
the binding between the IMS profile and the digital file could provide the 
necessary answer for the clients in order to move their files from one computer 
to another in the way that you pack up your books and move them from one 
house to another. 

7.4.1.3 IMS Session Management 
IMS is going to be used in Vital++ as a means to provide an enhanced control 
plane for P2P networks and transactions. In this way the IMS network will 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 38 of 64 

provide controllable and secured access to content indexing functions and an 
additional effort will focus on the exploitation of information available to IMS 
entities for aiding the P2P overlay initialisation and maintenance. For this 
purpose standard IMS procedures such as SIP calls, Presence 
Publication/Subscription, and Instant Messaging will be used for the provision 
of added value services targeting at the exploitation of acquired information in 
the P2P operations. The aim is not to modify these standardised SIP 
procedures but to map them on P2P application-specific needs.  
Since the main contribution of IMS to P2P in this combination of technologies is 
based on control and access aspects, the expected overhead in the setting up 
of P2P channels by use of IMS procedures needs to be compensated by the 
fact that the joined P2P overlays will have significant performance and stability 
in content transfer. Session setup is a key element in SIP operation. It is 
intended therefore to utilise it not only for the obvious reason of setting up 
sessions for content transfer among peers, but also for exploiting the IMS 
network mechanisms for QoS in order to ensure the proper provision of the 
added value services. 
The Session Description Protocol (SDP) of SIP messages might be enhanced to 
communicate the setting up of peer to peer channels. Although this procedure 
might require additional steps until the actual channel is ready to transfer 
content, the imposed overhead can be outweighed by the fact that the relevant 
channels will be automatically added to QoS mechanisms and be served as 
normal SIP sessions. The IMS user control and access policies can guarantee 
that received session setup requests have been previously authorised and 
authenticated by the system.  
Additional sessions can be added on the fly and normal session tear-down 
procedures can be also put in effect.  
In summary, content publication and discovery can be supported by SIP 
Application Servers that process the SIP exchanged information in a way to aid 
P2P procedures and also all peer to peer content exchange channels can be 
initiated and maintained in a SIP/IMS fashion. 

7.4.2 P2P related components 

7.4.2.1 DHT and Distributed Queries 
 
When placing information into the DHT there are several considerations 
necessary for our scenarios. The likelihood is that the devices using the 
Vital++ system will be devices with limited resources, i.e. smart phones, set 
top boxes, net books, etc. and therefore will have limited storage capacity and 
processing power. These system resources will place constraints on the overall 
architecture of the P2P mechanisms employed. For instance, with Bit Torrent, a 
file is broken up into small parts and transferred amongst peers. The chunk 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 39 of 64 

size of the file needs to be small enough so that they are of a size optimal for a 
peer to download and don't lead to a massive torrent file. If a chunk is too 
large and during download it is corrupted then the down-loader will be forced 
to discard and download that chunk again. So a larger chunk size can mean a 
slower overall conversion of “leechers” to “seeders”, slowing down the maturity 
of the swarm as a whole. The average size of a chunk for desktop based P2P 
clients is 256KB so some experimentation will probably be required to find an 
optimal chunk size for an IMS based UE.  
Another point to consider will be if Vital++ will provide a Tracker server or will 
the use of public based Trackers suffice? Or will Vital++ use the officially 
supported extension, Distributed Trackers? These questions do not need to be 
addressed at the moment but a decision will need to be made in the design 
and implementation phase of the project. 
The centralized Tracker is a major barrier to a fully decentralized system. The 
Distributed Tracker is BitTorrent which utilizes a DHT to remove the reliance on 
a centralized Tracker. Instead of the Tracker being a web server it can be the 
original seeder or a set of nodes in the DHT can be randomly picked to act as 
the trackers. It would possibly make sense if the Trackers are distributed 
amongst the super-peers in the overlay as these super-peers should have the 
necessary resources to sufficiently process any requests made to it for content. 
As IP addresses are assigned during registration, the only constant which can 
be used to identify the peer with the content in the tracker would be the SIP 
public address. 
Maintaining a correct list of current valid sessions, currently connected peers, 
is also a problem in P2P systems. The requirement is to design a system which 
is robust enough to handle such an environment. Most existing DHT systems, 
e.g. Pastry or Chord, with excess churn return inconsistent data or suffer from 
high latency regardless of the lookup or routing mechanism employed. To 
handle this churn, there are several approaches which can be considered: 
Reactive vs. Periodic Recovery, Timeout calculations, Proximity Neighbour 
Selection. 
With Reactive Recovery the system reacts to loss of a leaf node instantly, by 
sending out the updated leaf set to every node in the set (O(k2)). Periodic 
Recovery uses a periodic update where each node shares its leaf set with every 
neighbour, which in turn responds with their own leaf set. In terms of 
scalability reactive recovery uses less bandwidth when there is little churn in 
the system but when churn increases, bandwidth usage jumps dramatically. 
Therefore, with networks which are prone to high rates of churn the Periodic 
Recovery solution is the most effective. 
Timeout calculations are important when nodes disappear frequently, e.g. due 
to a temporary loss of network signal. The nodes have to find a reasonable 
timeout value. If it is too short the node can experience congestion and 
increased processor load, too long and the node can experience unnecessary 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 40 of 64 

waiting and increasing queue lengths. The peers can use several strategies to 
combat this. The simplest is a fixed/static timeout. This solution is easiest to 
implement but not very useful in the long run. The next method is to use a 
TCP-style timeout where each node maintains a list with each neighbour’s 
response time in the past. Another way to approach this is to use timeouts 
from virtual coordinates. Each node in the DHT is assigned a synthetic 
coordinate. Every node then computes the distance to other nodes by sampling 
network latency. This information is then used to predict a coordinate and this 
is then shared with other nodes. An example of this type of approach is the 
distributed algorithm Vivaldi. In systems which experience significant amounts 
of churn, TCP-style timeout has been found to perform the best. 
Proximity Neighbour Selection is used to build the routing table. Latency is 
generally lower between the nearest neighbours. The best approach is to 
update proximity periodically as neighbours change often. Global sampling 
uses prefixes to lookup new neighbours. This method is effective and gives an 
almost optimal proximity in most cases. Recursive sampling is also proven to 
be effective in some network settings. The local node retrieves all of the nodes 
at the top level of the routing table. Then the latency is measured for each and 
the best is kept. The local node then checks the next level neighbours for the 
nodes it kept. Overall global sampling has been found to give the least latency. 
See section 7.2.4.3 for a more detailed explanation. 
DHTs already use proactive replication of meta-information e.g. keys and 
pointers for search efficiency. Proactive replication of copies of each data-item 
can help search efficiency, load-balancing and availability. With the Tapestry 
DHT implementation data itself can also be replicated, in which case pointers 
to the data contain pointers to all copies of the data. Chord can support data 
replication by storing a list of nearest successors on each node. Due to the 
routing scheme, this method of replication does not achieve load balancing, 
only data redundancy. There is no need to maintain availability of cached data 
as the DHT is used to maintain pointers to copies on the peers. File replication 
methods in structured P2P networks determine replica nodes based on node 
IDs or the query path. ID-based methods determine replica nodes using on the 
relationship between the node ID and the file's ID, while path-based methods 
choose replica nodes in the file query path from the file requester to the file 
provider. Both methods assume that replica nodes have available capacity for 
replicas. However, this cannot be assumed due the nature of the peers within 
Vital++ as the devices running Vital++ clients will most likely be running with 
limited resources, e.g. smart-phones, set-top boxes and net-books. 

7.4.2.2 Content Diffusion Overlay 
In this chapter, according to the technical objectives that we derive from the 
requirements that we described in section 6, we describe in an abstract way 
the overlay architecture where each node enters in order to acquire content or 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 41 of 64 

live video streams. For each object (file, video, audio) we form such an overlay 
as described later in order to distribute it through a P2P architecture. 
The purpose of the content diffusion overlay architecture is to achieve fast and 
stable diffusion of each block of an object with high upload bandwidth 
utilization. Towards this goal we need an overlay where each node selects 
dynamically close neighbours in the underlying network, a graph structure 
where nodes with heterogeneous bandwidth capabilities are able to utilize all 
their upload bandwidth, and finally we focus on an overlay adaptable to the 
dynamic node arrivals and departures. 
Every node that enters the system participates in an overlay that we call base 
overlay. Every node of the base overlay has an equal number of neighbours. 
We note the set of neighbours of a node i of the base overlay as Mb(i). The 
base overlay is a symmetric graph, where adjacent nodes exchange blocks and 
control information in both directions. 
As in real P2P live streaming systems nodes have heterogeneous upload 
bandwidths we construct another overlay, the top overlay, which includes only 
the nodes that have upload bandwidth greater than the rate of the video 
stream. In the rest of this section we will call these nodes super nodes and 
while nodes with upload bandwidth less than the video stream rate will be 
called slow nodes. Exactly like the base overlay, the top overlay is a symmetric 
graph and all of its nodes have an equal number of neighbours. We note as 
Mt(i) the set of the neighbours of a super node i. In order to fully exploit the 
upload bandwidth of the super nodes, as we describe later in detail, we 
interconnect the two overlays by connecting super nodes with a number of 
slow nodes proportionally to the difference between their upload bandwidth 
and the rate of the video stream. We note the set of connections of a super 
node i as MS(i). In order to ensure that each slow node will acquire the video 
stream, we spread these connections to the slow nodes uniformly. For slow 
node i of base overlay, we note the set of super node neighbours as MI(i). 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 42 of 64 

Top overlay 
connections

Inter overlay 
connections

Base overlay 
connections

High 
upload 

bandwidth 
nodes 

All 
participating 

nodes

 
Figure 5: Graph architecture of the content diffusion overlay 

In this figure we present an example overlay architecture where nodes of the 
base overlay have |Mb(i)|=3, nodes of the top overlay have |Mt(i)|=2 and slow 
nodes of the base have |MI(i)|=1. The inter-overlay connections of super 
nodes MS(i) are proportional to the difference between their upload bandwidth 
and the video streaming rate.  
The purpose of the top overlay is the relatively fast and complete diffusion of 
the video stream between the super nodes. The equal number of neighbours 
for each node of this overlay ensures the good graph connectivity and the low 
graph diameter. Furthermore, the average upload bandwidth in every 
neighbourhood of this overlay is higher than the video stream rate. Combining 
these two facts with the neighbour selection function, which prefers nodes with 
high upload bandwidth, we can guarantee that all super nodes will successfully 
acquire the video stream.  
The purpose of the base overlay is the utilization of the upload bandwidth of 
slow nodes. Neighbourhoods of this overlay have average upload bandwidth 
similar to the video streaming rate. Due to this property of the base overlay, 
we maximize the upload bandwidth utilization of each slow node. 
The purpose of the inter-connections between super nodes and slow nodes is 
to utilize the bandwidth of super nodes that it is not used in the top overlay. 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 43 of 64 

The remaining bandwidth of each super node varies and thus it is distributed to 
a number of connections proportional to the difference between its upload 
bandwidth and the rate of the video stream. These connections are spread 
uniformly to slow nodes of the base overlay. The neighbour selection function, 
using the inter-connections, is capable to ensure that the video stream is fairly 
distributed to every slow node. 
Our overlay architecture combined with the neighbour selection function 
adapts the bit rates of the flows between the nodes of the overlay. This 
provides us a tolerant and stable P2P live streaming system, which is minimally 
affected by the dynamic network conditions and node behaviour. 
In order to dynamically manage our overlay we will develop two distributed 
algorithms that run periodically in our system. The first algorithm is called 
Intra-overlay distributed optimization algorithm (Intra-DOA) and it is 
responsible for the dynamic reconfiguration of the top and the base overlay 
separately. It determines the neighbours of each node in the overlay according 
to the network latencies between the nodes. The second algorithm is called 
inter-overlay distributed optimization algorithm (Inter-DOA) and it is dedicated 
to determining dynamically the number of the inter-connections of each super 
node and to redistributing them uniformly to the slow nodes according to the 
network latencies. 

Intra-overlay distributed optimization algorithm (Intra-DOA) 
This algorithm aims at keeping both overlays dynamically reconfigured and 
optimized with respect to node latencies in the underlying network. Intuitively, 
the goal of this algorithm is to maintain a balanced overlay where nodes have 
equal numbers of neighbours and where each node has neighbours physically 
close to it in the underlying network. Three events may trigger two 
neighbouring nodes to execute this algorithm: a) the arrival or departure of a 
node, b) a change in network conditions and c) the reconfiguration of their 
neighbours. All these events result in new neighbour sets and/or Stt values, 
which, in turn, invoke this algorithm to rearrange a graph neighbourhood in 
the base or the top overlay. 
 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 44 of 64 

NODE 1

NODE 2

NODE 1

NODE 2

A

B

C D

E

F

G

A

B

C

H

H

G

F

E

D

 
 

Figure 6: Iteration of the Intra-DOA 

The upper figure shows the initiators (Node 1 and Node 2) and the set of their 
neighbours Nbefore(1)={b,c,f,e} and Nbefore(2)={g,d,a,h} respectively. The 
figure below illustrates the new sets of the initiators’ neighbours 
Nafter(1)={a,b,c,h} and Nafter(2)={g,d,e,f}  respectively, after a single iteration 
of Intra-DOA. In this figure the length of the edges between two nodes is 
proportional to the network latency between them. 
The objective is to develop an algorithm that will dynamically rearrange the 
overlay according to the “distance” between nodes. This distance could be the 
network latency between participating nodes or any other metric that 
expresses the suitability of neighbouring between two nodes. There are three 
requirements from this algorithm.  
The first is its global convergence to an optimal overlay according to the 
aforementioned distance. The second is its distributed implementation and the 
third is its fast distributed execution in order to have an overlay that reacts 
fast under dynamic conditions. 

Inter-overlay distributed optimization algorithm (Inter-DOA) 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 45 of 64 

This algorithm aims to optimize in a distributed manner the inter-connections 
that super nodes use in order to diffuse the video stream to the slow nodes. It 
ensures that every super node has neighbours, which have small distance 
between them, and the number of these neighbours is proportional to the 
exceed bandwidth of each super node. We define exceed bandwidth of a super 
node i as BE(i)=c(i) – μ, where μ is the video streaming bit rate. 
 
 

NODE 1 

NODE 1

NODE 2

NODE 2

a b c d

e
f

a b c
d

e f

 
 

Figure 7: Iteration of the Inter-DOA 

We present an execution of an iteration of the Inter-DOA where Node1 and 
Node2 are the initiators and participate in the top overlay. We consider that 
Node 1 has double exceeded upload bandwidth compared with Node2. The set 
of their neighbours are Msbefore(1)={a,c,f} and Msbefore(2)={b,d,e}. After an 
iteration of Inter-DOA Msafter(1)={a,b,c,d} and Msafter(2)={e,f}. 
 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 46 of 64 

7.4.2.3 File sharing block exchange scheduler 
After the insertion of a peer to the overlay it has a list of peers that have the 
file. The downloader then initially establishes a connection to these peers and 
finds out what pieces reside in each of the other peers. The overlay 
maintenance is then responsibility of Inter-DOA and Intra-DOA as was 
described above. 

Neighbour selection function 
A downloader then requests pieces which it does not have from all the peers to 
which it is connected. But each peer is allowed to upload only to a fixed 
number of peers (a typical value is four) at a given time. Uploading is called 
unchoke. Which peers to unchoke is determined by the current downloading 
rate from these peers, i.e., each peer uploads to the four peers that provide it 
with the best downloading rate even though it may have received requests 
from more than four downloaders. This mechanism is intended to deter free-
riding. Since a peer is only uploading to four other peers at any time, it is 
possible that a peer, say Peer A, may not be uploading to a peer, say Peer B, 
which could provide a higher downloading rate than any of the peers to which 
Peer A is currently uploading.  
Therefore, to allow each peer to explore the downloading rates of other peers, 
we will use a process called optimistic unchoking. Under optimistic unchoking, 
each peer randomly selects a fifth peer from which it has received a 
downloading request and uploads to this peer. Thus, including optimistic 
unchoking, a peer may be uploading to five other peers at any time. Optimistic 
unchoking is attempted once every 30 seconds and to allow optimistic 
unchoking while keeping the maximum number of uploads equal to five, an 
upload to the peer with the lowest downloading rate is dropped.  
There are two types of peers, namely downloaders and seeds. Downloaders 
are peers who only have a part (or none) of the file while seeds are peers who 
have all the pieces of the file but stay in the system to allow other peers to 
download from them. Thus, seeds only perform uploading while downloaders 
download pieces that they do not have and upload pieces that they have. 

Block selection algorithm 
In practice, a swarming network is a very complicated system. There may be 
hundreds of peers in the system. Each peer may have different parts of the 
file. Each peer may also have different uploading/downloading bandwidth. 
Further, each peer only has partial information of the whole network and can 
only make decisions based on local information. In addition, BitTorrent has a 
protocol (called the rarest-first policy) to ensure a uniform distribution of 
pieces among the peers and protocols (the so-called endgame mode) to 
prevent users who have all but a few of the pieces from waiting too long to 
finish their download. Like with any good modelling exercise, we trade-off 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 47 of 64 

between the simplicity of the model and its ability to capture all facets of the 
protocol.  

7.4.2.4 Live multimedia streaming block exchange scheduler 
Without loss of generality, we assume that in a P2P streaming system there is 
a bootstrap node which acts as a source for providing the video stream. 
Furthermore, the video stream is divided into blocks. The block size depends 
on the service rate, say μ (measured in bps that the video playback requires), 
and the number of blocks into which the bootstrap node divides one second of 
video playback. We define this number as Nb blocks/sec representing also the 
frequency of new blocks generated by the source. So each block is generated 
every 1/Nb seconds at the bootstrap node, with a size equal to Lb=μ/Nb bits. 
Every block is also associated with a time stamp indicating the time of its 
generation. All peers reproduce (play) the video with a delay called set-up time 
which we denote as ts. As mentioned above, setup time is the time that 
elapses from the generation of a block at the source until its distribution 
(propagation) to every node in the P2P system. Accordingly, at every time 
instant every peer plays the block that was generated ts se before in the origin 
server, provided of course that this block has eventually reached its 
destination. 

 
 

Figure 8: Snapshot of a buffer in a node with the states of the blocks 

 
During this setup time a number of blocks have been generated, equal to 
Nb*ts, the first of which will be played by every node after ts seconds. 
Therefore, at every instant every node is required to keep track of all Nb*ts 
blocks generated within a sliding window of ts seconds. For this reason every 
node maintains a buffer of size Nb*ts that holds the state of these blocks. Two 
states are of interest: received blocks and missing blocks (not delivered yet). 
Figure 8 provides a snapshot of the states of blocks of a buffer in a node.  



Deliverable D2.3: Detailed client adaptations specification    

 

Page 48 of 64 

Whenever the origin server produces a new block it forwards it first to a small 
subset of the peers that participate in the system. Each peer maintains 
connections and exchanges blocks with a relatively small number of nodes, 
which we call its neighbours, in order to retrieve the whole video stream. To 
know exactly which blocks should be exchanged, each peer exchanges the 
contents of its buffer with every one of its neighbours. Then a scheduler that 
runs in the nodes decides which block should be transmitted next to which 
neighbouring node.  

The Neighbour Selection Function 
Our scheduler architecture consists of a function that runs in every node and 
exploits the upload bandwidth of the node’s neighbours and the situation of 
their buffers. Neighbours in the overlay periodically exchange between them 
their buffers and their temporal upload capacity. 
We first define a decision function, d(i,j), that provides a metric used for the 
selection of a neighbouring node j for block transmission by node i. The 
decision function could be given by a formula similar with the following: 
 

 
 
The node selected for block transmission is the one with the maximum d(i,j) 
∀j. In this equation |neighbours(i)| denotes the total number of neighbours of 
i. Additionally rank(i,j) is a function that returns the position of node j in a list 
with neighbours ordered in incremental upload bandwidth value. We have 
chosen to factorize the network bandwidths in this way in order to make our 
scheduler independent of the upload bandwidth values and as such suitable for 
every upload bandwidth distribution. buf_size that is equal to Nb*ts denotes the 
number of blocks that nodes exchange at each time instant. Finally, the 
parameter per is a constant representing the percentage of the buffer size. We 
have successfully experimented with values of parameter per close to very 
small percentages of buffer size (between 5%-10%). 

Content diffusion optimization algorithm 
In the previous section we have analyzed the factors that affect the selection 
of a node for block transmission. In this section we will focus on the 
mechanism that determines which block should be sent to the selected node 
aiming at minimizing duplicate block transmissions and at fast diffusion of 
newly produced or rare blocks within an overlay “neighbourhood”. The decision 
is receiver driven, in other words the receiver sends periodically in each of its 
neighbours a block id that is a suggestion in case that they select it for block 
transmission. A new reception of a suggestion overwrites an older. 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 49 of 64 

Due to the symmetric property of the overlay, a receiver node is already 
informed about the buffer contents of its neighbours because it is also a 
potential sender to them. Therefore, by applying a matching process a receiver 
node can proactively request different blocks from its neighbours thus resulting 
in the elimination of duplicate block transmissions. The matching process is 
accomplished by performing a weighted matching algorithm between the 
missing blocks (as presented in the node’s buffer) and those neighbours that 
have them (as presented in their buffers), while favouring requests to those 
nodes that have higher upload bandwidth capabilities. Accordingly, whenever a 
node’s neighbour selection function chooses the next node for transmission, it 
also takes into account whether the selected node has already requested a 
specific block and if there is no request it selects one node randomly. Further 
details for content diffusion optimization algorithm will be analyzed in WP3. 

7.4.2.5 P2P QoS Functionality 
 
A function acts as manager in order to ensure that for each file or video that 
we distribute there are enough resources with respect to the user or 
application requirements. As we described earlier, through our self-organized 
P2P overlay and our schedulers we are capable to fully and optimally exploit 
the upload bandwidth of the participating peers. On the other hand, these 
bandwidth resources may not be able to meet the application requirements or 
the user agreement. For example, an overlay where peers have an average 
upload bandwidth of 900 kbps is not able to deliver to its peers a video stream 
with 1000 kbps. 
In this case we can develop two mechanisms that will further enforce the 
capabilities of our system towards QoS optimization.  
The first is further bandwidth provision from the centralized servers. This 
technique will be applied in content distribution and in live video streaming.  
The second is the distribution of encoded videos with different playback 
bitrates according to the available peer and server resources.  
When a peer enters an overlay in order to acquire a file or a video its upload 
bandwidth is kept by a function that we call Resource Management Function 
(RMF). In order to keep our system scalable we do not report to this function 
through a time driven protocol but only when we monitor in an upload 
bandwidth a change above a predefined threshold. In this way, each time 
instant the RMF is able to calculate the aggregate upload bandwidth of all 
peers, who participate in each distribution of a specific file or video (in other 
words the sum of their upload bandwidths or the average). 
Additionally, it is able to calculate the additional upload bandwidth that is 
required. So it can calculate the excess bandwidth that is required. 
Then a resource provisioning entity (RPE) (QoS- Coordinator) contributes the 
additional resources that are required in order to have an object distribution 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 50 of 64 

that meets our requirements. The total bandwidth that RPE has to provide, 
each time instant, is equal to the difference between the requirements of the 
video stream or file distribution multiplied by the number of users and the 
aggregate upload bandwidth that the RMF reports. There is no need for a 
server to provide to a specific peer more bandwidth than its application 
requires. On the other hand, with the provision of its content from the server, 
other peers are not consuming upload bandwidth for it and through our 
distributed scheduler they can feed the rest of their neighbours with content. 
In the remaining WPs we will develop an algorithm that takes care of this 
functionality. 
When we consider that the aggregate upload bandwidth that peers have and 
the additional bandwidth that servers can provide are insufficient for the 
distribution, the only thing that we can do is to lower the video playback rate. 
On the other hand, when we have much more resources and peers with high 
upload bandwidth we can raise the video playback rate. Towards this goal 
there is a need for a decision function (RSF – Rate Selection Function) that will 
select the appropriate play back rate according to the dynamic behaviour of 
peers and available bandwidth. Additionally, in order to apply such a technique 
we need the video to be encoded in different rates and stored to a specific 
server so that this function will be able to select the appropriate one. 

7.4.3 Content related components  

7.4.3.1 Content Indexing  
One significant client feature is that it must allow for content searching and 
publication to be done without the use of separate protocols and software 
(Internet browser). This is achieved by the use of existing SIP procedures in 
IMS. The innovation is based on the use of Application Servers that collect the 
communicated information and process it in a way that allows for queries to be 
executed against the accumulated information so that clients can be fed with 
results that are meaningful in the process of locating media items that can be 
shared in a P2P way.  
Application Servers, apart from storing the details regarding the clients that 
publish or retrieve through P2P any kind of content and thus being candidate 
members of further overlays, they store information relating to the nature of 
the published content. The information sets may include codecs, bitrates, file 
sizes and other media related details the circulation of which to the involved 
peers may ease and enhance content processing especially in the case of the 
video or audio items the reception of which is of live or nearly live (on 
demand) nature. 
This information, unless created and maintained by the Application Servers 
(QoS and topology related), is provided by the originating content sources. The 
mechanism for transferring it is based on the use of SIP message fields such as 
the Message Body of an Instant Message, generic tags. 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 51 of 64 

7.4.3.2 Content insertion and content removal  
Second generation P2P networks like Tapestry, Chord, Pastry and CAN 
implement basic key-based routing interfaces (KBR) which support 
deterministic routing to a live node which has responsibility for that destination 
key. Tapestry and Chord construct locally optimal routing tables from 
initialization and maintains them in order to reduce routing search. Tapestry 
allows applications to publish according to their needs by publishing location 
pointers throughout the network to facilitate efficient routing to these objects. 
Tapestry dynamically maps each identifier G to a unique live node known as 
the identifier’s root Gr. To route messages, each node maintains a routing 
table consisting of node ids and IP addresses of its neighbour nodes. When 
routing towards the root node the messages are routed across neighbour links 
to nodes whose node ids are progressively closer to G in the ID space. 
Each root node inherits a unique spanning tree for routing its messages from 
the leaf nodes traversing the tree until reaching the root. This property can be 
utilized to locate objects by storing meta-data across nodes including the root. 
For example, a Vital++ client has a file or object O with a unique GUID OG and 
a root node OR5. The Vital++ client should periodically advertise or publish this 
object by routing a publish message towards OR. Each node along the 
publication path stores a pointer mapping, not a copy of the object itself, 
although object replication and caching are means by which further guarantees 
can be given to ensure that objects are available to other nodes when the root 
node is unavailable. When separate clients have their own copies or replicas of 
a file or object then each client publishes its own copy. 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 52 of 64 

8 Specific Clients Adaptations 

8.1 Monster Client 
This chapter of Specific Clients Adaptations compares the results of the 
previous chapter Generic Client Architecture with the FOKUS MONSTER 
framework and depicts its components. 
 

 
Figure 9: Layered architecture of MONSTER depicts adaptations 

Figure 9 above shows the layered architecture of MONSTER grouped by those 
components which are most important in the context of this chapter. The 
available and the not available symbols depict whether the MONSTER 
framework contains the specific component or not.  

8.1.1 IMS related functions 

Since MONSTER is an IMS Client, it is absolutely applicable for all the required 
IMS related functionalities. The components used for IMS are divided into the 
three layers: Service Layer, Application Layer and Presentation Layer.  
The Service layer contains the protocol stack. The complete IMS signalling 
and messaging is done through the SIP stack, which is once instantiated by the 
client on start up. 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 53 of 64 

The signalling plane of the Application Layer contains the main IMS signalling 
functionalities, which are offered by MONSTER. 
These are: 
• Register (and unregister as counterpart) an IMS Client at the IMS Core. The 

registration is done for a specific duration time (expires), which has to be 
determined at the registration process. This is an optional parameter, which 
is overwritten by its default value, in case of misuse or when it is missing. 

• A session represents a multimedia connection between two or more devices 
or to a third party resource. The Session Management is used to 
dynamically optimize the session’s parameters in a specific way. A session is 
needed to exchange information between two or more devices. 

• One of multiple methods for IMS client communication is messaging, which 
is done with the SIP request type message at the service layer. The 
application layer contains an interface for the instant message type page 
message and its implementation provides full message functionality to send 
an instant message over SIP.  

• A subscription monitors changes of event states of remote devices or 
remote resources. A change of a state of a subscribed event triggers the 
referring signalling from the IMS to the subscriber.  

 
The Presentation Layer contains the Graphical User Interface (GUI) which 
offers the functionality of the underlying layers to the layer on top and thereby 
to the user. Received and sent messages are displayed and tasks like e.g. 
create new message, delete or reply to a message as well as the management 
of contacts are provided at this stage. The presentation layer is independent 
from the display technology. It supports JAVA SWT for mobiles as well as 
SWING for rich clients. 

8.1.2 P2P related functions 

The requirements concerning the domain of P2P are not supported by 
MONSTER and will need to be developed in the course of the project.  
The protocol stack of the Service Layer has to be extended with a protocol to 
provide communication in a P2P overlay. The existing JAIN10 SIP stack in 
MONSTER is extensible, e.g. with the protocol P2PSIP11

The Peer To Peer plane of the Application Layer will contain a Secure DHT unit 
which enables security issues, something that is missing in the normal P2P 

. The main advantage of 
this extension would be to reuse most of the suitable functionality of the SIP 
stack and to get a dual communication channel in turn. 

                                    
10  https://jain-sip.dev.java.net/ 
11  http://www.p2psip.org/drafts/draft-ietf-p2psip-concepts-02.txt 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 54 of 64 

environment. Especially a Public Key Infrastructure (PKI) allows authorization 
and authentication between clients which act as peer or lets a client 
prove/check the integrity of content.  
As a supplement, it provides the general functions to participate and act in an 
overlay using a DHT. These functions are join, leave, put and get as well as 
time driven management tasks to maintain the overlay e.g. fixing the finger 
table. 

8.1.2.1 Streaming 
The streaming module provides an interface to demand a specific stream and 
to retrieve an overlay position in a distribution graph as a set of neighbour 
peers to exchange data.  
This set can be divided into two subsets, one with peers to receive data from 
and a second subset of peers to send data to.  
This overlay information could be generated by an Overlay Construction and 
Management AS. The neighbouring peers exchange tables over P2PSIP in 
which available parts are listed. An automatic or an implicit request let the 
initiator receive a chunk map of a neighbouring peer. The module receives the 
chunk map request and answers them by sending its own chunk map. 
The same module demands and receives specific parts (part=chunk=set of 
continuous RTP packets) of the requested stream from neighbouring peers. 
Thereby peers can be queried automatically. It also handles receiving chunk-
requests and serves them with the demanded chunk or a suitable error 
message. 
A received chunk is stored in a buffer in which the available parts are ordered 
referring their playback position. Additionally, a scheduler assigns priorities to 
missing chunks to ensure interruption-free playback by enforcing the 
requesting of higher prioritized chunks. Eventually, the ordered parts are 
combined and reassembled to one media object, which can be played in the 
Media Playback. 

8.1.2.2 File sharing 
A module for file sharing arranges peers with demands for identical static 
content objects in a way to let them exchange data. Therefore, one file object 
is divided into several chunks, which are managed in local maps to keep track 
of their availability status. This module supports the exchange of chunk maps 
where maps can be sent and received bidirectionally. Additionally, requests for 
chunks are addressed or received in return with a proper protocol. A positive 
response for a chunk request is answered with the referring chunk that 
initiates a communication for explicit data transfer. 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 55 of 64 

8.1.3 Content related functions 

The control of media with MONSTER is realized with the use of the Java Media 
Framework (JMF12). All received streaming media is processed at the 
Application Layer as well as all sent media such as live streams which had to 
be captured previously as depicted in Figure 10 below at the index 2.  
 

 
Figure 10: Signal- and workflow for media exchange 

 
A demanded media object and its referring streaming type are clearly 
identified, e.g. over a Content Index on a website with a web browser as 
depicted in Figure 10 above at the index 1, which is supported by MONSTER.  
A content creator selects a device out of a device list with a device browser 
and a content owner offers a file object via file browser to the processing unit. 
At this stage filters or format encoding are applied to captured media streams 
or existing static file objects that are going to be streamed. The processing 
unit instantiates a data source and creates an outgoing RTP/RTCP stream. 
MONSTER offers all the listed and necessary functionalities up to this point with 
the use of JMF. The Content Management unit applies demands (format, used 

                                    
12  http://java.sun.com/javase/technologies/desktop/media/jmf/ 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 56 of 64 

filter) of the content creator to the stream and announces the stream, e.g. at a 
Content Index.  
The Presentation Layer provides media control functionalities for playback 
control (start/stop/pause/skip) and media discovery, e.g. via web browser. The 
content is managed with tasks like select, store or delete which in turn are 
performed in the Content plane of the Application Layer as depicted in Figure 
10, index 3.  
Additionally, the Media Control monitors the status of open connections to 
other peers with details like throughput, finger table entries or other 
transmission statistics. 

8.2 BCT Client 

8.2.1 IMS related functions 

The BCT client is a Java application that runs on top of an internal SIP machine 
built entirely by BCT. Recently, it has been redesigned to allow for SIP 
extensions according to application needs. The client was initially used for the 
provision of on-demand video streams from an Application Server through pure 
IMS networks. It also supports applications, such as collaborative drawing and 
chatting, that were built as proof-of-concept by use of a proprietary protocol 
running over SIP Instant Messaging (IM).  
Built initially as an IMS client and having been tested as such in an IMS 
environment, the BCT client supports already or is planned to be adapted to 
support the following SIP and IMS related functions: 
• Registration: The initial module was adopted to support AKAv1-MD5 so 

that it is compatible with Fokus’ OpenIMS platform 
• Instant Messaging: Generation of SIP IMs and also handling of incoming 

ones can be a very fast and sufficient way for communicating control 
information. The current design allows for customisable use of messages by 
the application logic. 

• Call setup and teardown: session setup by use of outgoing invitations is 
already supported, however, further SDP negotiations have to be 
implemented as well as handling of incoming invitations so that the client 
can support additional application logic beyond the initial User Agent Client 
functionality.  

• Presence: SIP Presence capabilities have been recently started being 
embedded in the client. Again the design allows for customisable use of the 
presence logic. 
• Publication: The application should be able to publish the SIP/IMS 

identity of the user on a presence server. This capability should be 
modular so as to keep the published information up-to-date and 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 57 of 64 

according to the changes in the underlying access network so that 
precise knowledge of the client’s networking capabilities are available.  

• Notification Handling: Apart from making available the details of its 
actual presence, the client should be also able to subscribe to events 
relating with other IMS entities so that it receives notifications regarding 
the presence state of these resources. Such an aspect can be used to 
update the view of the synthesis of overlays which the client might have 
joined prior to discovering any modification through P2P means.  

• NAT and Firewall traversal: The BCT client should be also enhanced to 
adequately cope with networking restrictions so that the controlled media 
sessions can be successfully established and maintained. The level of these 
adaptations will be defined according to the network architecture design 
outcomes so that the project’s needs are fully satisfied. However, full 
support of NAT and Firewall traversal is planned to implemented in a more 
generic framework.  

The presentation module is based on Java Swing and the media playback 
engine is the one provided by the Java Media Framework. The media handling 
part will be reconsidered according to the final network architecture and may 
be replaced on demand to cater for any further functionality not currently 
available by JMF. Ongoing work is also focusing on creating a Mobile Client. 
The main concept is to keep most of the modules common for both platforms 
(desktop and mobile) and this was a major reason why a custom SIP engine 
and protocol stack have been developed.  

8.2.2 P2P related functions 

The BCT client, as already mentioned, is based on a pure IMS implementation 
which has to be enhanced with P2P capabilities. These are meant to be built 
around a P2P algorithms library. This library will be wrapped in a P2P engine 
that can be plugged in the client environment.  
The integration of the P2P engine will allow message exchange and content 
circulation to be transparent to the engine’s procedures. In this way, the 
integration of the two technologies can follow discrete steps leading from 
simple scenarios of IMS/P2P combinations to more complex ones by replacing 
certain parts of the P2P operation with functions and procedures provided by 
IMS. This will be realised along the following roadmap:  
• Only initial overlay synthesis is provided by IMS Application Servers 
• Overlay management is also done by these servers  
• Experienced quality is reported by clients to dedicated AS that process the 

information for overlay modifications that are circulated among users 
• Invocation of SIP session setup mechanisms for the content transfer 

channels 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 58 of 64 

However, each step has to be evaluated regarding the achieved improvements 
or the problems that may impose on P2P operations.  
The major adaptation, however, concerns the media handling infrastructure of 
the client since the content in VoD and live streaming will be provided through 
P2P content exchange schemes. The relevant adaptations are presented in the 
following paragraphs. 

8.2.2.1 Video on Demand and Live Streaming 
VoD is already supported by the BCT client. However, this feature has to be 
adapted so that P2P transport means are used instead of RTP. Live Streaming 
(LS) is a new feature to be supported but from the media handling point of 
view is quite similar to VoD. The main adaptation effort will be focusing on 
making JMF media handling libraries work over a different kind of transport 
medium.  
The main aspects that development will particularly focus are: 
• Provision of a metadata handling feature that will replace either the Session 

Description Protocol (SDP) in the case of RTP streams or the file processing 
mechanism for local files, so that the proper JMF codecs can be invoked on 
the fly.  

• Implementation of a transport layer that will be hiding the P2P layer 
procedures from the media engine and that will also be creating a buffering 
space so that P2P content acquisition can be smoothly integrated with the 
media engine. 

8.2.2.2 File Sharing 
File sharing is considered to be simpler than the VoD and LS cases. Once the 
P2P engine has been integrated with the IMS part of the client it is matter of 
developing a proper file management console and engine so that local storage 
can be properly combined with the P2P engine block. 

8.2.3 Content related functions 

8.2.3.1 Audio/Video playback and capturing and play-out 
The BCT client utilises the JMF package for playing video streams acquired 
from RTP connections that have been set up by SIP Invite messages. In the 
context of Vital++, the BCT client needs to be adapted so that it supports 
reception and playback of media streams beyond the session setup means 
offered by SIP and also from different transport protocols than RTP and mainly 
through P2P procedures. Additionally, the client should be able to capture 
video content through a webcam and microphone and stream it to the 
appropriate audience according to the corresponding use case. This feature will 
allow the client to operate as a live stream source. 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 59 of 64 

There are therefore two major adaptations with respect to multimedia playback 
and play-out: 

1. Introduction of a new transport layer that provides an interface towards 
the JMF classes that is compatible with the supported transports and 
media containers of JMF. Such a layer will be operating over the P2P 
content exchange engine and will be aggregating content and content 
metadata so that these can be fed seamlessly into the JMF environment 
for proper playback of the received stream whether this is VoD or a Live 
Stream. 

2. Utilisation of the capturing capabilities of JMF and integration with the 
above described “transport” module for the proper injection of the 
outgoing content into the P2P overlay. 

8.2.3.2 Present a graphical user interface (GUI) 
The BCT client already has a GUI that caters for the needs of VoD, 
Collaborative Drawing and Chat services. The GUI is organised in tabs that 
provide separate functionalities such as application configuration, video 
playback, drawing, chatting, debugging. This set will be augmented to present 
to the user content searching capabilities by means of keyword based 
searching and depiction of the obtained list of available content. There will be 
also a tree-based representation of content discovery to cater for hierarchically 
organised publication of content in case such a content storing schema is 
supported by the Vital++ Content indexing functions.  Items discovered and 
represented on the GUI which may be interesting for the user to receive will be 
associated with rich GUI controls that will allow for actions regarding the 
reception of the specific content to be triggered through those GUI controls. An 
additional control will be added in the tabs of the client to allow for content 
publication. This will allow for definition of metadata (keywords) that will 
accompany the submission of the item to the Vital++ platform.  

8.2.3.3 Content security measures 
In case content is to be encrypted prior its uploading on the P2P network the 
client will provide a means for defining digital certificates to be used in this 
process. On the other hand, if mechanisms will be enforced to allow resolution 
of rights and policies towards other peers, those will be provided by plug-in 
modules in the P2P engine. There are two possibilities depending on the actual 
content security scheme that will be adopted in Vital++. The introduced 
mechanisms will be accommodated in the client as a separate module  
• either with a specific API to cater for content encryption/decryption 
• or embedded into the P2P and SIP engines to formulate a mechanism for 

preserving access rights and policies. 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 60 of 64 

8.2.3.4 Content Management 
At the user interaction layer, the client will be utilising a module that will be 
mapping discovered content or published content on protocol layer 
transactions. According to the specific instantiation of the client, this module 
will be triggering all the required actions so that the underlying layers initiate 
the appropriate procedures. However, the actions will be abstractly triggered 
through the specific provider module that will be responsible for mapping these 
on specific SIP and P2P procedures. 

8.2.3.5 Content Discovery 
This is a complementary functionality with the previous since it will be 
providing the “content” which is to be managed.  Such a module will be 
implemented in an agnostic manner with respect to the underlying discovery 
protocol and procedures so that these are driven according to the specific 
instantiation details of the client. 
Both content discovery and management functionality will be subject to the 
appropriate mapping on specific protocol layer functions. This mapping will be 
instantiated according to a provider module that will be integrating all the 
underlying functionalities (SIP and P2P) in a specific manner. The provider will 
be binding P2P control actions with SIP procedures and vice versa so that the 
P2P engine is controlled by information obtained and propagated through 
SIP/IMS messages and techniques. 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 61 of 64 

9 Implementation plan 

9.1 Monster Client 
The implementation plan for the MONSTER client framework covers the 
necessary changes in order to comply with the generic client architecture and 
requirements. The implementation plan is split into three phases: 
Phase I: Basic implementations regarding media processing, network 
protocols and GUI extensions.  
Phase II: Implementation of higher functions, which require the presence of 
other VITAL++ architectural components, like DRM, QoS or content indexing 
(CI). The exact functional blocks depend on the corresponding availability of 
infrastructural components. Basically, at least one of the three shall be 
implemented in order to demonstrate true P2P-IMS cooperation. 
Phase III: Finalization. In this phase, all missing higher functionalities shall 
be implemented. 
 
A demonstrator with basic P2P media streaming functionalities, based on the 
AS-based overlay construction, is envisaged as a milestone for the end of 
phase I. After phase II, a P2P-IMS cooperation demonstration will be possible 
(2nd Milestone). The 3rd milestone is planted after phase III, showing a full 
VITAL++ client. The following figure illustrates the implementation plan. 

Phase I Phase II Phase III

Milestone I
Basic Functionality

Milestone II
P2P-IMS Cooperation

Milestone III
Final VITAL++ Client

Media Flow
• Capturing/Playback 
• Splitting/Combining
• Distribution
Passive Overlay Construction
GUI Extensions
• Statistics

DRM Support
• Licence Generation/

Transport/Interpretation
• Content En-/Decryption
QoS
• NGN based QoS
• P2P QoS Algorithm
Content Index
• Publish/Discover

Finalization

 
Figure 11: MONSTER P2P Implementation plan 

 
Time plan: 
• Milestone I: ready for June 17th 2009. 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 62 of 64 

• Milestone II: ready for end of Sept. 2009. 
• Milestone III: aligned with the deliverables 3.1 and 3.2 end of Feb. 2010. 
 

9.2 BCT Client 
The implementation plan for the BTC client is structured in four phases. In 
each phase we will develop a prototype that we will be able to demonstrate 
according to the timeline that we present at the end of this section. 
 
• User Interface 

• Control 
 Communication abstraction (1st Prototype) 
 Content Searching 

• Logic (1st Prototype) 
• UI Element  (1st Prototype) 

 Content Publication 
• Logic (2nd Prototype) 
• UI Element  (2nd Prototype) 

• Media 
 Transmission abstraction  (1st Prototype) 
 Acquisition abstraction  (1st Prototype) 
 Media Capturing (3rd Prototype) 
 Media Playback (2nd Prototype) 
 Control Panel 

• UI Element (1st Prototype) 
• Logic (1st Prototype) 

• Protocols 
• SIP engine (1st Prototype) 
• P2P engine 

 P2P Algorithms (1st Prototype) 
 DHT (4th Prototype) 
 Communication abstraction  (1st Prototype) 
 Media buffering and exchange (1st Prototype) 

• File System engine 
 Uploading  (4th Prototype) 
 Downloading (4th Prototype) 

• Security 
 DRM (3rd Prototype) 

• Service Providers 
 SIP Provider (for content indexing)  (1st Prototype) 



 Deliverable D2.3: Detailed client adaptations specification  

 

Page 63 of 64 

 Raw socket communication provider (for media exchange) (2nd 
Prototype) 

 Mixed provider (incorporating parts of the SIP and Raw socket 
provider) (3rd Prototype) 

 DRM or Security Provider (licenses, key exchange) (3rd Prototype) 
 
 
• 1st Prototype: End of June 2009 
• 2nd Prototype: Ready for the next project review (September 2009) 
• 3rd Prototype: aligned with the deliverables 3.1 and 3.2 end of Feb. 2010 
• 4th Prototype: aligned with the deliverables 3.1 and 3.2 end of Feb. 2010 



Deliverable D2.3: Detailed client adaptations specification    

 

Page 64 of 64 

10  Conclusions 

In this deliverable we analyzed the functionalities that we have to implement in 
order to deliver P2P services such as: content distribution, live streaming and 
video on demand all of which will be managed with IMS.  
The functionalities that we have described focus on two complementary 
objectives. The first is the extension and the optimization of the 
aforementioned P2P services through research into the mechanisms that they 
may use for scalable, distributed content and video diffusion. The second is the 
combination of these services with IMS mechanisms in order to exploit its 
centralised management, its authentication mechanisms, its charging 
mechanisms and the bandwidth provision from central servers. Through the 
exploitation of such mechanisms we aim to offer security functionalities, high 
and scalable performance and to minimise service interruption during dynamic 
network behaviour and peer arrivals and departures. 
A major functionality towards this goal is the research, the design and the 
implementation of distributed scheduling mechanisms that are able to deliver 
the blocks of each object by avoiding the content bottleneck between two 
neighbours and meet the real time constraints of the video and audio 
streaming. 
Additionally, it is vital to formulate and maintain a content diffusion overlay 
that is dynamically adapting to underlying network conditions, to peer arrivals 
and departures.  
Also by embedding a DHT in the client we will be able to offload the 
responsible severs from object and key location and allow peers to contribute 
with their storage and their processing capabilities to object and key location. 
Furthermore, by developing an authentication mechanism we will be in a 
position to maintain a system which only authorized peers will be able to enter 
and we can charge them for the participation in it. Distributed authentication 
will infuse scalability properties to our system and dynamic overlay 
reconfiguration for optimizing the system’s performance. 
The monitoring of the distribution of each object and the provision of 
bandwidth from centralized servers will make object distribution and streaming 
stable to the underlying network behaviour. 
 
 
 
 

- End of document - 


	Table of Contents
	List of Figures
	Document History
	Executive Summary
	Introduction
	Scope
	Deliverable Structure

	Functionality Requirements
	IMS related Functions
	Authentication
	IMS Session Management
	Session Negotiation and Setup
	Management of Network Limitations and Restrictions

	P2P related Functions
	P2P Distributed Queries and DHT Overlay
	Overlay Construction Requirements for Vital++ P2P distributed queries

	P2P Content Diffusion Overlay
	P2P Scheduling
	Overlay Optimisation & QoS Management
	Vital++ P2P Overlay Optimisation & QoS Requirements

	Modularity of Design & Implementation

	Content related Functions
	Audio/Video Capturing and Play-out
	Graphical User Interface (GUI)
	Content Security Measures
	Content Management
	Content Discovery and Advertisement


	VITAL++ Generic Client Architecture
	Module Architecture Overview
	User Interaction Layer
	Protocols Layer

	Underlying Data Models
	General Interface Definition
	UNI Signalling Interface
	Functionality
	Protocols

	UNI Transport Interface
	Functionality
	Protocols


	VITAL++ Client Architectural Components
	IMS related Components
	P2P Authentication
	Digital Rights Management
	IMS Session Management

	P2P related components
	DHT and Distributed Queries
	Content Diffusion Overlay
	Intra-overlay distributed optimization algorithm (Intra-DOA)
	Inter-overlay distributed optimization algorithm (Inter-DOA)

	File sharing block exchange scheduler
	Neighbour selection function
	Block selection algorithm

	Live multimedia streaming block exchange scheduler
	The Neighbour Selection Function
	Content diffusion optimization algorithm

	P2P QoS Functionality

	Content related components
	Content Indexing
	Content insertion and content removal



	Specific Clients Adaptations
	Monster Client
	IMS related functions
	P2P related functions
	Streaming
	File sharing

	Content related functions

	BCT Client
	IMS related functions
	P2P related functions
	Video on Demand and Live Streaming
	File Sharing

	Content related functions
	Audio/Video playback and capturing and play-out
	Present a graphical user interface (GUI)
	Content security measures
	Content Management
	Content Discovery



	Implementation plan
	Monster Client
	BCT Client

	Conclusions

