
Page 1 of 68

Project Number: Contract Number: INFSO-ICT-224287

Project

acronym:
VITAL++

Project Title: Embedding P2P Technology in Next

Generation Networks: A New

Communication Paradigm &

Experimentation Infrastructure

Title of Report Design of the overlay network

architecture components

Instrument: STREP

Theme: ICT-2-1.6

Report Due: M21 (Feb.2010)

Report Delivered:

Lead Contractor for this deliverable: FOKUS

Contributors to this deliverable: Jens Fiedler (FOKUS), Julius Müller (FOKUS),

Stephen Garvey (WIT), Shane Dempsey (WIT),

Kostas Koutsopoulos (BCT), Nikolaos

Efthymiopoulos(UoP), Kostas Papanikitas (UoP),

Evangelos Markakis (CTRC), Evangelos Pallis (CTRC),

Argiris Sideris (CTRC), George Mastorakis (CTRC).

Estimated person Months: 25

Start date of project: 1st June 2008

Project duration 30 months

Revision: Version 1.9

Dissemination Level: PU - Public

Internal reviewer: TA

Deliverable D3.1: Design of the overlay network architecture components

Page 2 of 68

This page has been left blank intentionally.

Deliverable D3.1: Design of the overlay network architecture components

Page 3 of 68

1 Table of Contents

1 Table of Contents ... 3

2 List of Figures .. 5

3 Executive summary .. 6

4 Introduction .. 7

5 Requirements analysis .. 8

5.1 Required Features ... 8

5.2 Functional – Architecture requirements .. 9

5.3 Summary ... 10

6 System Architecture ... 12

6.1 Overview .. 12

6.2 Client ... 12

6.3 Platform ... 13

6.4 Summary ... 14

7 Sub-Architectures and Functional Blocks ... 15

7.1 P2P Authentication .. 15

7.1.1 Purpose of the P2PA-SA .. 15

7.1.2 General Description .. 15

7.1.3 P2PA refined Sub-Architecture ... 16

7.1.4 Transactions and Message Exchange 17

7.1.5 Description of the Software ... 22

7.2 Content Index ... 22

7.2.1 Purpose of the SA .. 22

7.2.2 Description of functions .. 23

7.2.3 Message Exchange and Transactions 24

7.2.4 Description of the Software ... 32

7.3 Overlay Management ... 33

7.3.1 Purpose of the SA .. 33

7.3.2 Description of functions .. 34

7.3.3 Description of the Software ... 39

7.3.4 Overlay management evaluation.. 40

7.4 Content Security ... 42

7.4.1 Purpose of the SA .. 43

7.4.2 Description of functions .. 45

7.4.3 Message Exchange and Transactions 50

7.4.4 Description of the Software ... 53

Deliverable D3.1: Design of the overlay network architecture components

Page 4 of 68

7.5 P2P Media Exchange .. 54

7.5.1 Introduction .. 54

7.5.2 P2P Client Engine ... 55

7.6 Future Enhancements .. 56

7.6.1 Client DHT .. 57

7.6.2 NASS Attachment .. 58

7.7 Summary of Network Components .. 58

8 Conclusions ... 60

9 Annexes.. 61

9.1 Annex 1 - Content Indexing XML Schema 61

9.2 Annex 2 – XPath Query Example ... 62

9.3 P2P Authentication Messages .. 64

9.3.1 Server Certificate Acquisition... 64

9.3.2 Client Certificate Authorization .. 65

9.3.3 Authentic P2P Message Exchange .. 66

9.3.4 Diffie-Hellman Key Agreement ... 67

Deliverable D3.1: Design of the overlay network architecture components

Page 5 of 68

2 List of Figures

Figure 1: VITAL++ abstract view of the overall architecture 12

Figure 2: Client functional blocks ... 13

Figure 3: Platform components.. 14

Figure 4: Relation between Certificates and Messages 16

Figure 5: Revised P2PA Sub-Architecture .. 17

Figure 6: Initial server certificate acquisition ... 18

Figure 7: Client certificate exchange .. 19

Figure 8: Diffie-Hellman Key Agreement ... 20

Figure 9: Request for certificate .. 21

Figure 10: Authentic Message Exchange ... 21

Figure 11: CI-SA XML Schema .. 26

Figure 12: CI Client/Server Side Associations .. 30

Figure 13: Typical CI Scenario ... 31

Figure 14: The system overlay and its interconnectivity structure 33

Figure 15: Overlay organization before and after an execution of Intra-DOA . 36

Figure 16 - CPS integration within the IMS .. 45

Figure 17 - CPS model is based on Open Media Commons 47

Figure 18 - CP Subsystem Components ... Fehler! Textmarke nicht definiert.

Figure 19 - Disintermediation process .. 50

Figure 20: JMF Adaptation .. 55

Figure 21: DHT Security issues .. 57

Deliverable D3.1: Design of the overlay network architecture components

Page 6 of 68

3 Executive summary

The VITAL++ projects goal is to create a service platform, which allows the
secure distribution of P2P multimedia content and community services, using

the benefits of a centralistic architecture like the IP multimedia subsystem
(IMS).

This deliverable describes the platform elements in terms of four sub-
architectures for P2P-Authentication, Content Indexing, Content Security and

Overlay Management. Each of these sub-architectures spans across the client

and over a part of the IMS. The IMS component developed is an application
server, holding the IMS part of each sub-architecture.

The counterpart to the application server is a user-controlled client holding
the client part of each sub-architecture. Two clients are being developed. This

ensures the re-usability of client components, which as a design element
helps to ensure the interoperability with clients of different vendors, which

may want to enable their clients with Vital++-support.

The P2P-Authentication sub-architecture uses a certificate-based message

exchange in order to sign and verify P2P messages. The Content Indexing
sub-architecture is used by clients in order to publish and discover content

including meta-data. The Overlay management sub-architecture’s purpose is
to build and maintain performing P2P overlays and the Content Security sub-

architecture realizes a digital rights management (DRM) in the IMS.

Also, the P2P media exchange schemes are depicted and explained. They

have to address the different multimedia distribution models (Live-TV, Video-

on-Demand and File sharing), which differ in their requirements for jitter,
real-time and necessary bandwidth.

As further improvements and future design goals, a client-based DHT and
support for the network attachment sub-system (NASS) are proposed.

This deliverable is complemented by the deliverable 3.2, which describes
interaction between the elements and simple operations needed in order to

build services on top.

Deliverable D3.1: Design of the overlay network architecture components

Page 7 of 68

4 Introduction

The VITAL++ projects main challenge is to combine the benefits from P2P
media distribution and IMS control plane in order to build secure, effective

multimedia and community services. In the deliverables 2.2 and 2.3, the
essential elements of a related architecture have been outlined, which are the

basis for the work in work-package 3.

The purpose of this deliverable 3.1 is to describe the functional blocks and

network protocols, i.e. the elements of the platform, while the deliverable 3.2

describes the integration of these functional blocks into service building entities
needed to build converged VITAL++ services, which are then described in

WP4.

These envisaged aims were mainly

• Secure and authentic distribution of multimedia streams (i.e. audio and
video)

• Scalable real-time multimedia delivery (from ”Live” down to ”Offline”).

• Network-topology optimized overlays to reduce network traffic.

• Enable Secure P2P Message exchange for distributed community
services.

One challenge was to minimize the deployment of new network nodes in order
to achieve the envisaged aims. In order to minimize deployment efforts, two

main construction sites have been identified, which are the client, which is
under the control of a potentially malicious user and a trusted server

component in the realm of the IMS walled garden, the VITAL++ application

server.

Thus, the scope of this deliverable is the description of the core elements of

the VITAL++ system. This deliverable is complemented by the deliverable 3.2
to describe the full VITAL++ service platform.

The deliverable is outlined as follows. Chapter 5 analyses the requirements for
the VITAL++ architecture and its components. Chapter 6 gives an overview of

the overall architecture, including all components from the P2P and IMS parts,
as well as newly added components. In chapter 7, all developed functionalities

are described in terms of purpose, implementation, network protocols and
message flows. Chapter 8 draws conclusions.

Deliverable D3.1: Design of the overlay network architecture components

Page 8 of 68

5 Requirements analysis

In this chapter, all the requirements of VITAL++ project are presented. The
required features of the VITAL++ project are re-introduced. The three

scenarios, content integrity, content security, topology awareness and
additional functionalities for the project VITAL++ are presented.

5.1 Required Features

The required features of VITAL++ are content distribution, live streaming and
video on demand.

In content distribution, a user who wants to transfer a file to a vast number of
peers is using his P2P client in order to divide the file into different blocks.

These blocks are transmitted to the end users. The end users will download
this block and concurrently transmit them back to various end users. In order

an end user to download a whole file all he need to do is to merge the various

downloaded blocks. These blocks are concurrently received and transmitted in
the whole infrastructure. These blocks distribution initiates the end user to

utilize the network infrastructure.

Major drawbacks of content distributions are content bottlenecks. When the

peers do not have different blocks to exchange and their upload bandwidth
remains idle a content bottleneck is created. In this aspect VITAL++ proposes

efficient algorithms that take into account various network requirements such
as round trip time, bandwidth and P2P localization. More specifically, for these

requirements the main algorithm implemented by VITAL++ is created by two
overlays. The first overlay called base overlay contains the nodes that enter

the system. The base overlay is a symmetric graph, where adjacent nodes
exchange buffers and blocks in both directions. The second overlay called top

overlay contains all the users that have better upload bandwidth. By achieving
a better localization inside the VITAL++ test bed we are able to provide a

faster content contribution In this way, the VITAL++ P2P client will be able to

provide content distribution faster than common P2P clients.

In peer-assisted video on demand (VoD), the same peers that are viewing the

publisher’s videos distribute the content. In this way, the publishers can
dramatically reduce the bandwidth cost since peer-assisted VoD can move a

significant fraction of the uploading from the server to unused resources (e.g.
upload bandwidth) of the peers. More specifically the bootstrap node (source of

video) divides the video stream into blocks. The block size will depend from the
service rate and the number of blocks into which the bootstrap node divides

one second of video playback. Every block is associated with a time stamp
indicating the time of its generation. All peers reproduce (play) the video with

a delay called set-up time. The VITAL++ consortium main concerns are to
create a mechanism that will determine which block should be sent to the

Deliverable D3.1: Design of the overlay network architecture components

Page 9 of 68

selected node aiming at minimizing duplicate block transmissions and fast
diffusion of newly produced or rare blocks within an overlay “neighbourhood”.

P2P live streaming is a real time application with strict delivery time
constraints and very demanding in terms of the aggregate bandwidth required

for the delivery of the stream to the participating peers. In general, a server
generates a video stream at a given service rate which is then divided into

blocks followed by their delivery to a small subset among the participating
peers. As a final step, all peers exchange these blocks in order to reproduce

the video stream.

An efficient P2P streaming system must be able to deliver a video stream with
the smallest possible delay, called setup time. With the term setup time, we

define the time interval between the generation of a block from the origin
server and its distribution to every peer in the system. It is obvious that the

main consideration of the VITAL++ consortium is to provide an algorithm for
discovering of peers and for the interchange of media information. The

VITAL++ project also takes into consideration various requirements such as
Content integrity, Content security, Topology awareness, etc.

The content integrity is achieved be employing a distributed database that will
focus on the creation of a hybrid architecture where all participating peers will

enter a DHT in order to have scalable queries. This centralized architecture will
manage the information in the DHT in order to increase reliability. The Content

Security Sub-Architecture prohibits illegal content access. The content will be
encrypted providing only to authorize peers in the IMS domain to be able to

decipher and use the related content. In addition, the operator can optionally

charge the publication of content as well as the consumption of content using
the VITAL++ P2P operator service. Finally VITAL++ will take into consideration

the need for an efficiently and scalable address content location ensuring
content availability by deploying an index database providing the necessary

content availability to the end users.

5.2 Functional – Architecture requirements

Transcoding

The need for transcoding arises from the fact that the bit rate requirement

varies from channel to channel because of vastness in the compression
standards in use. The adaptation process is distributed between different nodes

and a central application that will distribute conveniently the requests to the
nodes. For this process, an internal algorithm is developed internally to assure

the best job charge to the different nodes.

User profiles

The IMS holds a profile for each user in the home subscriber server (HSS), a

highly scalable central database. Additional information from the authentication
phase (like network identifiers) can be stored there and used for P2P overlay

Deliverable D3.1: Design of the overlay network architecture components

Page 10 of 68

planning, e.g. to optimize data paths in the overlays, which is extremely
important for streaming overlays (e.g. for the Live-TV scenario). In addition,

the data concerning users (e.g. public/private key pairs) can be stored in that
database.

DRM

Content must be secured from unauthorized acquisition and copying (assume
trusted client). The use of Digital Right Management (DRM) will result in a

reliable system so that the copyright laws are taken into account and the

necessary trust is achieved in the whole VITAL++ test bed. The binding
between the IMS profile and the digital rights management could provide the

necessary answer for the clients in order to move their files from one computer
to another without concerning of Digital right management

QoS

QoS is a requirement that originates from telecommunication networks and
has received a lot of attention since the early 1990. VITAL++ project will

exploit the adaptation and optimisation capabilities of P2P system and combine
them with Virtual networks of IP Multimedia Subsystem (IMS) managing to

overcome the “old” IntServ/ DIFFserv QoS paths used in various network. In
this way, exploitation of the hybrid P2P-IMS client will allow VITAL++ end-

users to experience Quality of Service during their communications.

Acounting

Accounting in communications systems involves the collection and analysis of
service and resource usage metrics for purposes such as billing, capacity and

trend analysis, cost allocation and auditing.

VITAL++ will investigate the key area of providing metering for dynamically

composed ad-hoc services delivered over a P2P overlay.

5.3 Summary

In this chapter we have reflect the requirements analysis for the main

functionalities, which form the base of the VITAL++ project in order to group
required functionalities and re-introduce the required features of the VITAL++

project.

In the bullets below a summarized version of this chapter is presented:

• Content distribution

o Fully utilize the network infrastructure.
• Video On Demand

o Minimizing duplicate block transmissions and fast diffusion.
• Live Streaming

o Provide an algorithm for discovering of peers and for the

Deliverable D3.1: Design of the overlay network architecture components

Page 11 of 68

interchange of media information.
• Content integrity.

o Uninterrupted service functionality (QoS).
• Content security

o Need for an authentication system.
o Digital Rights Managements

• Topology awareness.
o Need for an efficiently and scalable address content location

ensuring content availability.

Deliverable D3.1: Design of the overlay network architecture components

Page 12 of 68

6 System Architecture

6.1 Overview

The VITAL++ overall architecture is basically distributed over the Client and
the NGN/IMS area of functionalities. In this chapter we will give an overview

over the whole architecture, which will then be discussed in more detail in the
relevant sections in chapter 7.

In order to address the VITAL++ challenges, multiple sub-architectures have
been defined, which interact among each other. These are the P2P

Authentication sub-architecture (P2PA), the Content Index sub-architecture
(CI), the Overlay Management sub-architecture (OM) and the Content Security

sub-architecture (CS). Each sub-architecture spans over the client, the
network and the IMS with its components. Sub-architectures may interact

among each other in an arbitrary way, especially in the client, while on the
NGN side there need to be well defined interfaces. Thus the media exchange is

not entitled as sub-architecture, but it interacts with these and itself in the

same as well as in remote clients.

C
li

e
n

t-
F

u
n

ct
io

n
s

IM
S

/N
G

N
-F

u
n

ctio
n

s

NetworkClient(s) IMS

Message &

Media Exchange

P2P-Authentication

Content Indexing

Content Security

Overlay Management

Interaction

Figure 1: VITAL++ abstract view of the overall architecture

6.2 Client

The terms “Client” and “Peer” are used equivalently in this document as they

refer to the same thing. The VITAL++ client is a hybrid client. This means it is
an IMS client and a P2P client at the same time. The IMS functionalities are

used to mainly interact with an IMS core or system for exchanging control
information, while the P2P part is used to exchange content with other peers.

Deliverable D3.1: Design of the overlay network architecture components

Page 13 of 68

VITAL++

Client
Overlay

Management

QoS

Management

Content

Manager

Authentication

Client DRM

local

content

P2P Media

Exchange

P2P Message

Exchange

TCP

UDP

+

IP

SIP

RTP

GUI

Media

Player

Figure 2: Client functional blocks

The components of the client are directly derived from the necessity to interact
with other clients and the IMS core in order to fulfil the envisaged features.

Figure 2 illustrates the functional blocks inside the client. These are the content

manager, which is responsible for publishing and discovering content as well as
triggering DRM operations via the client DRM module if a licence needs to be

obtained. The authentication module obtains and manages certificates of
VITAL++ entities (clients, application servers, root-certificate). It interacts

mainly with the P2P message exchange in order to sign and verify messages.
The latter has the purpose to exchange P2P messages with other peers for

genric purposes (i.e. playlist exchange, etc.). The overlay management module
obtains overlay changes from the application server and re-organizes its

neighbourhood accordingly, also to respect to QoS requirements, issued by the
QoS management module, which can also realize QoS enforcement via NGN

mechanisms. Also standard IMS client functionality is realized (not depicted)
for initial IMS registration and IMS session management.

6.3 Platform

The platform side of the architecture consists of four application server
entities, which can be co-located in the same box (as depicted), or distributed

over several machines. The communication with the client occurs mainly
through the IMS core and its call/session control functions (P/I/S-CSCF). Each

of the functional blocks in the application server refers to a related sub-
architecture.

Deliverable D3.1: Design of the overlay network architecture components

Page 14 of 68

P2P

Authentication

Content

Security

Content

Index

VITAL++ AS

Overlay

Management

P-CSCF

S-CSCF

HSS

I-CSCF

Client

Figure 3: Platform components

Figure 3 depicts the platform components and their relation with other IMS
objects. The functional blocks are the

• P2P-Authentication module, which stores client certificates for use by
other modules, serves the client with initial credentials and signs the

client’s certificates on request.

• Content Index module, which stores content descriptions and metadata
and provides search functions to the clients.

• Overlay Management module, which constructs and maintains optimised
overlays according to the client’s connectivity.

• Content Security module, which provides and maintains DRM licenses for
published content.

6.4 Summary

In this chapter, an overview has been given to the VITAL++ overall system
architecture. The sub-architectures have been introduced, as well as the

functional blocks in the client and platform.

Altogether they provide functional services for building higher level

transactions and thus services based on the VITAL++ architecture. Due to the
complexity of the overall architecture, each sub-architecture and media

exchange is explained in detail in chapter 8.

Deliverable D3.1: Design of the overlay network architecture components

Page 15 of 68

7 Sub-Architectures and Functional Blocks

Related to the previous chapters, the System’s sub-architectures are explained
in detail. The internal construction of each sub-architecture is explained and

the intended usage is discussed. Also the used network protocols are described
with a special focus on possible modification and extension.

7.1 P2P Authentication

In this section the P2P Authentication sub-architecture (P2PA) is being
described. We describe the concept of p2p certificates, and how they are

acquired or generated as well as the basic transactions related to P2P
authentication.

7.1.1 Purpose of the P2PA-SA

The purpose of the P2PA-SA is to enable clients (peers) to verify the

authenticity of messages which have been sent by other clients directly to

them, without passing through any operator controlled entity. This envisages
the security of services, which are based on pure P2P message exchange, like

e.g. sharing of contacts or media, etc.

7.1.2 General Description

The P2P-Authentication sub-architecture works with certificates, i.e. digitally
signed chunks of data, which describe an entity and its properties, e.g. identity

and access rights. In the VITAL++ scope, three levels of certificates are
distinguished, as shown in the following table.

Root Certificate Self-signed.

Pre-installed in every client and P2P-Authentication
server module.

Server Certificate Signed by Root-CA.

Pre-installed in every P2P-Authentication server

module.

Describes the identity of the server domain and its

public key.

Acquired by each client during registration.

Client Certificate Signed by a P2P-Authentication server module on

request.

Describes the identity of the client and its public key.

Table 1: VITAL++ Certificate Types

Deliverable D3.1: Design of the overlay network architecture components

Page 16 of 68

Finally, each client is equipped with these three certificates, which allow it to
perform all authenticity transactions and checks as explained in then following

sub-sections.

Root-Cert.

Public Key

Signature

Root-ID

Private Key

Server-Cert.

Public Key

Signature

Server-ID

Private Key

Client1-Cert.

Public Key

Signature

Client1-ID

Private Key

u
se

d
 t

o
 s

ig
n

u
se

d
 t

o
 s

ig
n

Text Message

Signature over Text

Client 1

Client1-Cert.

Public Key

Signature

Client1-ID

Text Message

Signature over Text

u
se

d
 t

o
 s

ig
n

u
se

d
 t

o
 s

ig
n

Server-Cert.

Public Key

Signature

Server-ID

Root-Cert.

Public Key

Signature

Root-ID

used to

verify

P2P Message

Transfer over SIP

used to

verify Client 2

Pre-Installed

Pre-Installed

Acquired

Acquired

Generated

Transmitted

used to

verify

Figure 4: Relation between Certificates and Messages

The relation between the certificates and their use in order to enable authentic

message exchange is depicted in Figure 4.

7.1.3 P2PA refined Sub-Architecture

During the progress of the project, two changes have been performed on the

P2PA sub-architecture.

1) No support for the DHT.

The original idea was to store client certificates in a DHT, signed by the
AS, to make sure that clients can access any other client’s certificate to

verify its messages. The purpose was to create a distributed database of
client certificates. It became clear, that such a distributed storage for

client certificates already exists, although it is not organized as a DHT, as
every client holds its own client certificate and can send it to an

interested peer when requested.

Thus, any peer which needs a foreign client certificate, can either contact

that peer directly, or the sending entity sends its client certificate along
with its message.

Deliverable D3.1: Design of the overlay network architecture components

Page 17 of 68

2) Kq interface has been moved directly to the KSF

The purpose of the Kq interface is to allow access to stored client
certificates, especially to public keys, to other VITAL++ server

components. This access must be restricted to read-only access rights.
This is also achievable by moving the Kq interface from the Key

management function (KMF) directly to the key storage function (KSF).
The KSF is going to be realized using common database software, which

provides different access levels.

Figure 5 depicts the new functional layout of the P2PA sub-architecture.

KMF KSF

ISC

Ks

Kq

P2PA-SA

CSCFUE

DHT

Da

Kq

Figure 5: Revised P2PA Sub-Architecture

7.1.4 Transactions and Message Exchange

The functions of the P2P-Authentication sub-architecture are split into client-

located functions and server module-located functions which interact during
functional transactions. The supported transactions are explained in the

following sub-sections section.

In every transaction there is either a certificate or signature being

transported between the entities. Both are encoded as XML documents and

attached as a MIME multipart message to the corresponding SIP message.
Examples for the corresponding message types are given in the annex of this

document.

In order to simplify the processing of VITAL++ related SIP messages, a new

SIP header field has been introduced, namely the “Vitalpp” header field, this

is used in P2P-Authentication related SIP transactions.

7.1.4.1 Internal public key retrieval

The public key retrieval is realised through the Kq interface, which is directly

attached to the key storage function. The key storage function is realised as a

Deliverable D3.1: Design of the overlay network architecture components

Page 18 of 68

MySQL1 database server. Thus, the exact access method in terms of
username, password and table descriptions are currently subject to the local

deployment.

7.1.4.2 Initial certificate provision

Whenever a client registers to the IMS-core, a 3rd party registration is
performed towards the VITAL++-Application Server (VITAL++-AS), i.e. a

copy of the SIP REGISTER request is being sent to the application server in
order to notify about the registration. This means that the Vital++-AS is

informed about every registration of a user for whom the Vital++ feature has

been enabled in his IMS-profile. The P2P-Authentication module in the
VITAL++-AS will process the registration hint and supply the newly

registered user with a certificate, which is signed by the common Root-CA.
This certificate will be referred to as “Server-Certificate”, as it holds the

public part of the key pair of the server, which it uses to sign client-
certificates (s.a.). The following picture shows the message exchange

between the client and the VITAL++-AS for this transaction.

SIP REGISTER
Server

Cert.SIP MESSAGE
Verify Server

Cert. with

Root Cert. 200 OK

200 OK

Server

Cert.

Client

VITAL++ AS

S-CSCF

SIP REGISTER

200 OK

Figure 6: Initial server certificate acquisition

Figure 6 illustrates the message flow between the client, the application

server and the call/session control of the IMS-core. After this transaction,
which occurs only once per client and registration lifetime, the client can

verify signatures of messages issued to it by other peers, which have signed
their messages. It cannot sign messages itself yet; this requires the next

step, which is being described in the following section. An example message
can be seen in the appendix 9.3.1.

1
 http://www.mysql.com

Deliverable D3.1: Design of the overlay network architecture components

Page 19 of 68

The Vitalpp header field here has the value “P2PA OfferCert”, addressing

the P2P-Authentication part and triggering the function for receiving a

certificate.

7.1.4.3 Client certificate authorization

The process of authorizing the client certificate serves the purpose of
supplying the client with a valid personal certificate which he can use to

create authentic messages, as depicted in Figure 4. The basic message flow

is depicted in the following picture.

unsigned

Client Cert. SIP MESSAGE

Verify Client Cert.,

sign Client Cert.

Store Client Cert.

in Database
Client

Cert.

Generate Key

pair and

unsigned Client

Cert.

200 OK

signed

Client Cert.

Client VITAL++-AS

Figure 7: Client certificate exchange

The client hereby generates its personal private-public key-pair and creates

an unsigned certificate with its identity and public key. This is then being sent
to the VITAL++-AS, which checks the identity and other fields of the

certificate before he signs it with his private server key. The signed certificate

is then being sent back to the client, which stores it as its own personal
certificate. After performing this transaction, the client owns a valid

certificate, signed by the application server and therefore verifiable by every
instance, which also knows the server certificate. Example messages can be

seen in the annex 9.3.2.

The Vitalpp header field here has the value “P2PA RequestSigning”,

addressing the P2P-Authentication part and triggering the function for signing
a certificate.

As this process is vulnerable against a man-in-the-middle attack, it is advised
to encrypt this transaction. For that purpose, we suggest a Diffie-Hellman key

agreement transaction before the main transaction in order to establish a
common secret knowledge, which is then used to generate a symmetric key

for message encryption. The corresponding message flow is depicted in the

following illustration.

Deliverable D3.1: Design of the overlay network architecture components

Page 20 of 68

SIP MESSAGE

Generate Diffie-

Hellman

Parameters

g, p, a

Compute A

DH:

g,p,A

signed with

AS priv. key

Verify signature

with Server Cert.

Compute B, K
200 OK

DH: B

Compute K

Vital++

Client

Vital++

AS

Figure 8: Diffie-Hellman Key Agreement

Here, the Vital++-AS generates the Diffie-Hellman parameters g,p and A,

which he signs with his server key before he sends them to the client. This
then computes the parameters B and K, and sends B back to the server,

which completes his own computation of K. So both entities have the same
secret knowledge K, which can be used for further encryption of the

certificate exchange, explained before. The Diffie-Hellman algorithm is

explained in more detail in the annex 9.3.4.

7.1.4.4 Client-to-client certificate retrieval

Although a client can always send its certificate along with the corresponding
signed message, this will not be necessary when the receiving peer already

has this certificate. As the sender does not know whether the receiver has his
certificate, he can either send it along with the first message and safely

assume that for subsequent messages it will not be necessary to send the
certificate, or he simply does not send the certificate by its own initiative, but

sends the certificate only if the receiver sends a request back which demands
the certificate. This is an optimization of the message flow and the P2PA

security mechanisms will also work without this transaction. The message
flow for this transaction is depicted in Figure 9.

Deliverable D3.1: Design of the overlay network architecture components

Page 21 of 68

Client 2

Cert.

Client 1 Client 2

SIP MESSAGE

200 OK

Vitalpp: P2PA RequestCert

Verify Certificate

with

Server (CA) Cert.

Figure 9: Request for certificate

Here, the sender creates SIP request which triggers the receiver to send its
own client certificate along with the SIP response. When he receives the

response, the original requestor verifies the certificate with the server (CA)
certificate.

The VITALPP header field here has the value “P2PA RequestCert”,

addressing the P2P-Authentication part and triggering the function for sending
the client certificate.

7.1.4.5 Client-to-client Message authentication

In this section, we describe, how messages need to look like if they carry a

signed (authentic) message/information. In order to work, the sending client
needs to have its full client certificate acquired and the receiver needs the

corresponding server certificate. The message flow is depicted in Figure 10.

Client 1

Cert.

Verify Client 1

Cert. with

Server Cert.

Client 1 Client 2

SIP MESSAGE

200 OK

Message

Signature

Message

Payload

Verify Message

with

Client1 Cert.

Figure 10: Authentic Message Exchange

Here, the sender creates a text message, which he signs with his private key,

which corresponds to its own client certificate. He then sends the text

message along with its own client certificate and the message signature to
the receiver. This one can then first check the authenticity of the client

certificate using its server certificate, followed by checking the message

Deliverable D3.1: Design of the overlay network architecture components

Page 22 of 68

signature with the public key from the client certificate and inform the user
accordingly. An example message is depicted in the annex 9.3.3.

The Vitalpp header field here has the value “P2PA message”, addressing the

P2P-Authentication part and triggering the function for receiving a signed P2P

message.

7.1.5 Description of the Software

The software is realized on the IMS side of the architecture using the

Sailfin/Glassfish converged application server from Sun with the P2P-
Authentication servlet, which has been developed in the scope of this project.

The servlet is compiled from several Java classes which are in part also used
by the client to perform P2P authentication tasks. The whole bundle is

structured into several packages in order to build logical blocks. The following
table gives an overview over the packages and their usage in the several

client and server components.

vitalpp.as In this package, classes which serve the purpose of
attaching to the application server container are

realized. These are used to serve the SIP Servlet API
1.1, provided by Sailfin.

vitalpp.as.p2pa This package provides the main functionality of the
server side of the P2P-Authentication sub-architecture.

All certificate signing and provision functions are in this
package.

vitalpp.client.P2PA All common classes reside here, as they are also needed

by the client, e.g. the VitalppCertificate class.

vitalpp.test Functions for testing and certificate generation, like

root- and server certificates and the corresponding key-
pairs.

Table 2: P2P-Authentication package overview

7.2 Content Index

7.2.1 Purpose of the SA

The Content Indexing Sub-Architecture (CI-SA) has been introduced to offer
the following services to the Vital++ users:

• Content Publication

• Content Discovery

• Overlay Bootstrapping/Maintenance

Provision of these services involves interactions with the other sub-
architectures in the context of the integrated operation of Vital++ Application

Deliverable D3.1: Design of the overlay network architecture components

Page 23 of 68

Server. In this way the realisation of the control plane services on top of IMS
follows the principles that are posed by the requirements.

Implemented as a SIP Instant Messaging based service, CI-SA tries to hide all
the complexity with respect to other communication protocols and formats that

are required for the proper management of the information that is published
and stored in the Application Server or processed, refined and sent to the

Vital++ clients.

Content Publication

Registered IMS users willing to offer content that can be transferred by use of

the underlying Vital++ P2P techniques can send to the CI-SA a description of
the specific content item. In this way the client software declares its availability

to act as the original content source in order to feed any overlay that is
created to serve the transfer of the specific item. The publication information is

indented to be used as the main input during searching and as such it must be
complete enough so that queries can be executed against it.

Content Searching

This is a complementary service to Content Publication. Users willing to locate

specific media items define certain criteria that are relevant to the publication
parameters. The criteria are submitted to the CI-SA for processing. The result

of the processing which is a search against the published information is sent to
the requesting users as a list of descriptions of available content items. This

list contains the actual descriptions along with matching factors acting as
indicators to present the relevance of the result.

Overlay Bootstrapping/Maintenance

Contrary to the regular session establishment in IMS, where connection
parameters are negotiated during set-up, the Vital++ client software has to

join P2P overlays in order to be able to acquire the content. For this purpose,
once the user has selected a specific content item to be retrieved and

reproduced locally, this has to be communicated to the CI-SA. In this case the
CI-SA interacts with the Overlay Management SA (OM-SA) in order to either

create a new overlay or to update an existing one. In any case the outcome of
the OM-SA, which is a list of peers per overlay member, is sent either to a

newly added member of an overlay or to an existing member for which the list
of its peers has been updated.

7.2.2 Description of functions

The services offered by the CI-SA are realised by the invocation of certain
functions either at the SA side or at the client side. These functions are

associated with an appropriate application context.

Function Direction Application Context

Publication Client -> CI-SA Provision of the details of an offered

content item. These details are intended

Deliverable D3.1: Design of the overlay network architecture components

Page 24 of 68

to be stored as an entry in a relevant
repository so that they can be used for

searching.

Publication-
Modification

Client -> CI- SA Update of the details of a previously
published item.

Publication-
Removal

Client -> CI- SA Removal of a previously published item

Query Client -> CI- SA Conveys the parameters according

which the SA should search for offered
items.

Query-Result CI-SA -> Client Conveys the result of the query..

Content-
Selection

Client -> CI- SA Declares the willingness of a client to
join an overlay through which it can

receive the selected content item. The
client’s network address and port

number that can be used in the overlay
are also provided.

Peer-List CI-SA -> Client Conveys a list with networking

addresses and port numbers that have
to be configured for bootstrapping the

P2P engine at the client-side so that it
can join an overlay and start receiving

the selected content.

Located-

Content-
Update

CI-SA -> Client Conveys any modification to content

items that have been already
communicated to certain clients as a

result of a query and for which the client
has issued a selection request.

Peer-List-

Update

CI-SA -> Client Addition of newly arrived peers in

existing overlays.

7.2.3 Message Exchange and Transactions

7.2.3.1 Message Content and Format

All the messages between clients and CI-SA are transferred in the body of SIP

Instant Messages. The actual content stored therein depends on the actual
function intended to be invoked by the specific message. Since IMs do not

necessitate the existence of a SIP session, states and associations should be
maintained by both the SA and the client software.

Deliverable D3.1: Design of the overlay network architecture components

Page 25 of 68

Currently, for all the transactions between clients and CI-SA for the realisation
of the above mentioned functions an XML schema (Annex 1 - Content Indexing

XML Schema) has been created. This XML schema caters for the composition of
all the possible messages that have to be embodied in the SIP IMs to and from

the CI-SA as XML documents.

A visual representation of this schema is provided in the following figure:

Deliverable D3.1: Design of the overlay network architecture components

Page 26 of 68

Figure 11: CI-SA XML Schema

Deliverable D3.1: Design of the overlay network architecture components

Page 27 of 68

The root element that is always sent in either direction is the message
element. For this element an attribute is always provided to indicate the

function to be invoked. The valid values for the attribute are the following:

• publication

• publication-successful

• publication-failure

• publication-modify

• publication-remove

• query

• query-result

• content-selection

• peer-list

• peer-list-update

• located-content-update

The root element’s body contains a sequence of content-item elements that in

turn contains a sequence of one exactly content element with zero or more
peer elements. Each content element may contain a locator that is a sequence

of fields (provider, programme, category, subcategory, series, episode) and a
list of keywords that can be used for searching and additional information

fileds. The peer element is an association of an IP address and a port number.

Depending on the message attribute value the following principles apply.

publication Any number of content-item elements can be
included. Each of these must contain one exactly

peer element to indicate the address-port pair of

the P2P Engine through which the published item
will be provided when the publisher will be

involved in the overlay. The fields of the content
element should be completed sufficiently so as to

enable the CI-SA execute more accurate queries
against the published items. The identifier must be

also provided.

publication-successful It is sent from the CI-SA to acknowledge a

successful publication. The identifier must be
present.

publication-failure It is sent from the CI-SA to indicate a failed
publication. The identifier must be present. The

description element of the content can be used for
providing the reason.

publication-modify The same with the publication. All modified fields

should be resent; absence of a field does not
modify any stored value of it. The identifier must

be also included.

Deliverable D3.1: Design of the overlay network architecture components

Page 28 of 68

publication-remove Any number of content-item elements can be
included. Only the identifier is meaningful, the rest

can be omitted.

query No peer elements are required, if any of these are

present, they will be ignored. Any number of
content-items can be present. If through the

enumeration of the content elements more than
one value are detected for a specific field, all the

values will be considered as alternatives (OR).

More precisely, the query is executed on the basis
of the enumerated locators and keywords. If more

than one locator is detected, same fields are
combined by OR while different fields are

conditions that combined by AND operator (see
Annex 2 – XPath Query Example).

query-result After executing the query, the CI-SA will return
back to the client a message containing any

number of content-items. The identifiers must be
included, and all the other fields must be also

copied from the original publication message.

content-selection Once the user has decided on joining an overlay

for acquiring a specific content item, the client
should send a message containing one at least

content-item (more than one can be sent if there is

such a request from the user) including the
correct identifier (the rest fields can be omitted)

and also one exactly address-port pair in the peer
element to indicate the settings of the P2P Engine

instance that will join the overlay.

peer-list After interaction with the OM-SA, the CI-SA will

send back to the client a message containing the
content-items with identifiers along with a number

of peers that will constitute the neighborhood of
the specific client.

peer-list-update The same as with peer-list. An up to date list of
neighbours will be sent to indicate newly added or

removed members of the overlay.

located-content-update This is the same as with the query-result. It is

intended to indicate any modifications occurred to

previously located and selected content. In case
only the identifier is supplied, the client should

perceive this as removal of the specific content-
item.

Deliverable D3.1: Design of the overlay network architecture components

Page 29 of 68

7.2.3.2 Functional Elements and Associations/Transactions

The combination of the centrally based control with the distributed content

transfer scheme implies that functionality is not strictly located either at the
client side or the server side. Both ends form a content distribution network

the operation of which relies on the proper execution of certain functionality at
certain points. Absence of one element may hinder the provision of the

services.

As already stated, the CI-SA provides a single service end-point through which

clients can publish and search for content as well as initialize and maintain the

settings in their P2P Engine instances for joining certain overlays for content
acquisition. Since the communication between CI-SA and client is based on IMs

all function invocations occur is an asynchronous manner.

As a functional block, Content Indexing consists of a number of functional

elements that operate at both ends in a complementary way. This distributed
architecture requires that among the functional elements certain relations are

established so that the overall operations are properly driven.

In the following figure (Figure 12) there is a representation of the associations

that are establishment for the provision of the services of the Content
Indexing.

Deliverable D3.1: Design of the overlay network architecture components

Page 30 of 68

CI Engine

CMF

P2P Engine

Content Management
Media

Sources

SIP engine

Media

Player

PO Publish

Modify

Remove

POPOPO

Query

Q. Result

Lookup

Criteria

POPOPOCi

POPOPOSi

Selection

S. Update

POPOPi P.L. Update

Peer List

POPOPi
POPOPi

POPOPi

SIP engine

Publish

Modify

Remove Content

Indexing

Repository

Server SideClient Side

Query

Q. Result

Selection

S. Update

P.L. Update

Peer List Overlay

Management SA

Figure 12: CI Client/Server Side Associations

The functional elements are grouped according to the content objects upon

which they act during operation. The content objects (Publication Object – PO,
Content indices – Ci, Selection indices – Si, Peer indices – Pi), are created at

the client side and they reflect information contained at the CI Repository. For
both sides every element is marked as incoming or outgoing. Around the CI

functional elements other functional blocks or sub-architectures with which
interactions may occur are also drawn. The sequence according which the

various objects are generated at the client side to trigger the creation of

outgoing messages that will trigger also server side actions is analysed in the
following.

The client side generates outgoing messages (publish, update, remove) in
order to reflect modifications occurring at the publications of a specific client.

These are collected by the server side and their content is used to update the
repository.

As already stated, lookup criteria are fed into the CI engine of the client side
and generate queries that are destined to the CI-SA at the server side. Lookup

criteria lead to query results that in turn generate the creation of Content
index objects.

Deliverable D3.1: Design of the overlay network architecture components

Page 31 of 68

A number of the Ci objects will be used to generate Selection index objects
depending on the user preferences. The existence of the Si objects will further

generate selection requests to be consumed by the server side. Changes
regarding existing publications may lead to the generation of selection updates

that have to be processed by the client side to adapt accordingly existing Si
objects. Moreover, the selections will be also sent to the Overlay Management

SA so that proper peer lists can be generated, updated and propagated to the
clients involved in content transmission. These peer lists are maintained per Si

object and they include Peer indices. The Pi objects are used to initialise and

maintain P2P Engines at the client side.

Although only one client side is displayed in the previous figure (Figure 12),

there is no limitation with respect to the number of clients that are associated
with server side. The associations established between client side objects and

server side repository entries that realise the CI logic enable the propagation
of changes to publications, overlay syntheses, etc to all involved parties.

Changes occurring in the objects of one client that may express content
publication or selection trigger updates towards the server side repository

entries that in turn result in updates towards the rest of clients that already
have established associations, as the result of a content selection, between the

objects of their environment and the In this way all the clients and the server
side maintain a common view of the content offering as well as an updated

view of the P2P topology in which they are involved.

A typical scenario of transaction including more than one client is indicated

below (Figure 13).

Figure 13: Typical CI Scenario

Deliverable D3.1: Design of the overlay network architecture components

Page 32 of 68

7.2.4 Description of the Software

7.2.4.1 Client Side

The Content Indexing module that exists in the client software is a Java
implementation packaged as a jar library and offering a specific API to be

invoked by other modules of the client. Its aim is to hide message processing

and allow other components to be developed more easily on top of it. It
exposes a set of functions relating to the CI functions described in the previous

paragraphs. More specifically, it exposes a set of functions to cover the needs
of the functional elements that generate outgoing messages. The component

that utilises these functions should also supply reference to callback items that
are able to receive associated incoming information. The association is based

on the use of content identifiers or internal references generated in the context
of the module’s operation. The CI module maintains also all the content objects

that hold publication, query, selection and peer information. Enumerations of
these objects are returned by the use of the appropriate functions.

The Content Indexing module is not triggering any communication procedures
but it can be associated with an object to which it can push outgoing messages

for further adaptation inside SIP IMs and transmission. From the same object
the CI module can collect any received messages. In this way the CI module is

not closely related to the actual communication framework allowing for it to be

re-used in other application assemblies and designs.

Processing and generation of the XML body of the messages is done by use of

the appropriately generated XML Beans (Apache XMLBeans2.4.0).

7.2.4.2 Server Side

The CI-SA is the server side of the Content Indexing is Java application. It is
using a custom implementation of a SIP stack for interfacing with the IMS.

There is a Instant Message Processor class that creates separate threads for
incoming messages processing. The processor is using appropriately generated

XML Beans (Apache XMLBeans2.4.0) for processing of the XML documents
included in the body of the IMs. The CI-SA maintains an XML data base

(Apache Xindice 1.1) with which it communicates by use of XPath and XUpdate
queries via the XML:DB XML Database API that is supplied together with the

database software. In order to communicate with the OM-SA the CI-SA is using
SOAP Web Services. This is done by the integration of an Apache Axis 1.4

Engine along with the properly generated Java Objects.

An additional mySQL database is used for storing the associations of content
identifiers with the publishers and also associations of user SIP-URIs with

network addresses.

Deliverable D3.1: Design of the overlay network architecture components

Page 33 of 68

7.3 Overlay Management

7.3.1 Purpose of the SA

An overlay graph architecture that forms the substrate for an efficient P2P live

streaming system should meet the following requirements.

Firstly, the overlay graph should be constructed in such a way that every peer

has a sufficient number of neighbours proportional to its uploading bandwidth.
This guarantees optimal utilization of each one’s uploading capability which, in

turn, has a positive impact on block scheduling. Likewise, each node should
have a sufficient number of incoming connections for the undisruptive

reception of the video stream regardless of the dynamic network conditions
and/or peer arrivals and departures. In addition, the overlay should be

dynamically reconfigurable in order to timely react to the various changes of

the underlying network as well as the dynamic peer behaviour. Last but not
least, it should exploit the underling network latencies, i.e. round trip times,

between peers, meaning that each peer should have as its neighbours those
peers that are close to him in the network. In other words, the overlay must

reflect as much as possible locality information in the way that peers are kept
organized. Our proposed overlay architecture derived from the aforementioned

requirements (Figure 14).

Figure 14: The system overlay and its interconnectivity structure

Deliverable D3.1: Design of the overlay network architecture components

Page 34 of 68

7.3.2 Description of functions

We distinguish between two types of peers: the super peers and the slow

peers. The former are those peers with uploading bandwidth higher than the
service rate of the video server whereas the latter less than the service rate.

Every slow peer that joins the system becomes part of a base overlay and is

assigned a fixed number of neighbours, say MB. This is a bidirectional mesh
overlay, balanced with respect to the number of neighbours. If this peer also

happens to be a super peer then it is also admitted to an additional overlay,
called super-peer overlay, of similar characteristics as the base overlay. In this

overlay, the peer is also assigned a fixed number of neighbours, say MS.

Our inter overlay connects the base and super-peer overlays by assigning a
number of super peers to each slow peer. More specifically, each slow peer in

the base overlay selects a fixed number of super peers, MI, which wishes to
connect with. These interconnections are unidirectional originating from the

super peers (outgoing reconnections) and terminating at the slow peers
(incoming connections). They are also distributed among super peers in a

manner proportional to the excess of their uploading bandwidth (uploading
bandwidth minus the stream service rate). The quantities MB, MS and MI are

parameters of the system overlay. Figure 14F depicts such a system overlay

with MB=3, MS=2, and MI=1.

The introduction of the super-peer overlay has been proposed with a number

of objectives in mind. Clustering together peers that have an uploading
bandwidth higher than the video stream rate guarantees fast distribution

among the super peers. Furthermore, organizing the peers such that everyone
has equal number of neighbours with the smallest possible distance (locality)

ensures uniform graph connectivity and short graph diameter. This results in a
graph structure that can be exploited by a scheduler to achieve fast and

optimal diffusion of the stream to the super peers.

The same graph organization mechanism is also followed in the base overlay in

order to have the same benefits with the super-peer overlay. Also the purpose
of the base overlay is the utilization of the uploading bandwidth of slow peers

as it is the only overlay in which they transmit blocks. The need for inter-
connections between super peers and slow peers, and the presence of super

peers in the base overlay has been in order to utilize the excess bandwidth of

super peers that it is not used in the super peer overlay. This process provides
the sufficient incoming bandwidth for the slow peers in order to acquire the

whole stream in the given time constrains while optimally utilizing their
uploading bandwidth during the operation of the system.

Whenever a slow peer enters the base overlay it randomly selects MB/2 peers
from the base overlay as its neighbours. By doing this, a total of MB new

connections are created leaving the ratio of nodes in the overlay with the sum
of connections constant. Similarly, when a super peer enters the super-peer

Deliverable D3.1: Design of the overlay network architecture components

Page 35 of 68

overlay it takes as neighbours MS/2 peers. Finally, a slow peer takes as
incoming neighbours MI peers (interconnections) from the super-peer overlay.

On the other hand, when a peer leaves, its neighbours replace this peer with
another one with a probability of 50 percent, except when a slow peer loses its

interconnection with a super peer in which case it replaces the departed node
with another one. The reasoning behind this mechanism is to keep the number

of overlay connections constant in order to keep our streaming system
unaffected from dynamic peer behaviour.

The proposed system overlay (base, super-peer and inter overlays) is

continuously organized according to two distributed algorithms: a) a locality
aware intra-overlay distributed optimization algorithm (Intra-DOA) applied to

the base and super-peer overlay, responsible for organizing peers with MB or
MS neighbours, respectively, and b) an inter-overlay distributed optimization

algorithm (Inter-DOA) algorithm responsible for the interconnection of the
base and super-peer overlay with MI connections per every slow peer while

taking into account the network latencies (locality) between the nodes in the
two overlays.

7.3.2.1 Intra-overlay distributed optimization algorithm

Intuitively, the goal of this algorithm is to maintain a balanced overlay where

nodes have equal number of neighbours while each node has neighbours that
are physically close to it in the underlying network. This algorithm is

responsible for handling: a) the arrival or departure of a node, b) changes in
network conditions, and c) changes in the neighbourhood set of a peer.

Intra-DOA makes use of a function, called energy function and denoted as

E(i,N(i)). It expresses the energy of node i in relation to the set of its
neighbours, N(i). The energy function is defined as the sum of network

latencies, Stt(i,j), of node i with all of its neighbours j∈ N(i), that is,

Furthermore we define Eall as the total energy of the nodes that participate in
the overlay. Hence,

The set S includes all the nodes that participate in the overlay every time

instant. Our algorithm is an iterative distributed algorithm that each node
executes periodically and uses integer linear optimization to minimize the sum

of the energies of a small fraction of nodes that participate in an iteration while
simultaneously balances the neighbours of the participating peers. It can be

proved that global convergence is guaranteed but proof is omitted due to
space constrains.

Deliverable D3.1: Design of the overlay network architecture components

Page 36 of 68

Figure 15: Overlay organization before and after an execution of Intra-DOA

Every time the algorithm is executed two adjacent peers in the overlay, which

we call initiators, mutually exchange the sets with the network addresses of
their neighbours. Then each initiator node measures the network latencies

between itself and the neighbours of the other initiator node, which for clarity

we call them satellite nodes. Left part of Figure 15shows the initiators, Node 1
and Node 2, and the set of their neighbours Nbefore(1)={b,c,f,e} and

Nbefore(2)={g,d,a,h} respectively. In the figure the length of the edges between
two nodes is proportional to the network latency between them.

We note as Swap the set of the initiators and as Nbefore(i) the initial sets of
satellite peers of each initiator i that could be reassigned during the execution

of the Intra-DOA. We note as α(i,j) the parameter that its value is equal to 1 if
the initiator i becomes neighbour with satellite j and 0 otherwise. The function

that we want to minimize during the iteration of Intra-DOA is:

In order to ensure the balanced properties of the overlay we introduce two

types of constraints. The first constraint ensures that satellite nodes will be
assigned uniformly to each initiator. For both initiators we model this

constraint with the following equation:

The second constraint ensures that after every iteration of Intra-DOA the

number of neighbours of a satellite node j that belongs to the various N(i) |

i Swap remains constant and is expressed by the following equation.

Deliverable D3.1: Design of the overlay network architecture components

Page 37 of 68

Where C(j) denotes the set of nodes that belong to Swap and are neighbours
with j before the execution of the algorithm. In most cases each satellite node

is a neighbour of one of them.

Right part of Figure 15 illustrates the new sets of initiator’s neighbours

Nafter(1)={a,b,c,h} and Nafter(2)={g,d,e,f} respectively, after a single iteration
of Intra-DOA.

Obviously the total energy (Eq. 2) of the system is a positive number as it is
the sum of network latencies between nodes. If we prove that after each

execution of Intra-DOA the total energy of the overlay decreases, then we

have proven that our algorithm globally converges and there are no
fluctuations in the overlay. By taking into consideration an execution of Intra-

DOA we can rewrite the total energy of the overlay as:

The first term of (Eq. 6) expresses the energy of the nodes that do not

participate in all iterations. The second term is the energy of the satellite nodes
and the third term is the energy of the swap initiators. During each execution

of Intra-DOA the first term of the equation remains unchanged while the third

term decreases as we have discussed in the previous paragraph. We prove
that the second term also decreases at each iteration of Intra-DOA equally to

the reduction of the third term. This is due to the symmetry of the overlay
since every edge participates in the energy of an initiator and a satellite node.

More formally we can rewrite the energy of each satellite node as:

E(I,N(i))= E(I,{N(i)-m | m Swap}) +Stt(i,m) =Esat(i, Nsat(i))+Stt(i,m) (7)

Where Esat(i, Nsat(i))= E(I,{N(i)-m | m Swap}) is the energy of a node that

remains constant during the algorithm execution.

The sum of all the energies of the satellite nodes is:

If we replace this term in Eq. 6 we end up with the following expression:

Deliverable D3.1: Design of the overlay network architecture components

Page 38 of 68

The first two terms of this equation do not change and the third one is the

minimization function that reduces the total energy in every execution of Intra-
DOA. This proves that our algorithm converges to a minimum energy overlay.

Our system evaluation confirms the convergence of our algorithm and the vast
reduction of the energy of each node.

7.3.2.2 Inter overlay distributed optimization algorithm

This distributed algorithm aims at optimizing the inter-connections that super
nodes use in order to assist slow nodes to distribute blocks at the service rate

of the live stream. It ensures that every super node has as its neighbours
nodes that are physically close to it in the underlying network, while the

number of these neighbours is kept proportional to the excess uploading
bandwidth of each super node.

The excess bandwidth of each super peer i is defined as BE(i)=c(i) – µ, where

µ is the streaming service rate and c(i) is the uploading bandwidth of i.

At the beginning of Inter-DOA two adjacent initiator nodes in the super peer

overlay (indicated again as Node 1 and Node 2 in Figure X3) exchange the sets
MI(i) of the network addresses of nodes in the base overlay they are connected

with. For instance, assuming that Node 1 has twice as much excess bandwidth
than Node 2 in Figure X3, their corresponding sets are MI_before(1)={a,c,f} and

MI_before(2)={b,d,e} (left part of figure).

Figure 16: Inter overlay connections before and after Inter-DOA execution.

Using the same definitions for Swap and α(i,j) the function we want to
minimize this time is:

Deliverable D3.1: Design of the overlay network architecture components

Page 39 of 68

Inter-DOA is executed in exactly the same way as Intra-DOA and we introduce
two types of constraints. The first ensures that after every iteration of Inter-

DOA the number of neighbours of a satellite node j that belongs to the various

MI(i) | i Swap remains constant and is expressed as:

Where C(j) denotes the set of nodes that belong to Swap and are neighbours
with j before the execution of the algorithm.

The second constraint (one for each initiator i) ensures that the participating
super nodes will distribute their interconnection edges proportionally to their

excess bandwidth BE(i), and is expressed by,

Right part of Figure 16 illustrates the new sets of interconnections after an
iteration of Inter-DOA MI_after(1)={a,b,c,d} and MI_after(2)={e,f}.

7.3.2.3 Inter-ISP traffic minimization

We can extend our DOA in order to take also into account the ISP to which
each peer belongs. In order to exploit this information and minimize the traffic

between ISPs we follow exactly the same methodology that we have described
in the previous sections but this time we calculate the energy of each peer as:

Where p is zero where i and j belong to the same ISP and a large number if

they belong to different ISPs. An extension of this work could be the
factorization of the costs that different inter ISP links have through p we leave

this now as future work.

7.3.3 Description of the Software

The core component of the software is the P2PEngine. This engine is integrated
in both BCT and Monster clients so as to perform the distribution of the stream

among the peers of the overlay. The P2PEngine consists of the scheduler, the
transport mechanism, the control mechanism, the overlay management

component and the statistics component.

The software is implemented in Python 2.6. For the construction of transport
and control layer the “twisted” library was used. The communication protocol is

Deliverable D3.1: Design of the overlay network architecture components

Page 40 of 68

UDP with separate listening ports for data and control messages, but the
modular architecture of the software can support TCP, mixed UDP and encoded

messages.

Considering that BCT and Monster clients are implemented in Java, there is a

web service interface in Java (P2PEngine.jar) which is used to perform the
interconnection of Python and Java. More precisely, in the python side a light

web server is launched with a set of registered web service functions. The Java
part communicates with web service calls with the engine and the data

exchange is fulfilled with dedicated sockets.

The media part of the software is implemented in BCT and Monster clients.
They both use the JMF (Java Media Framework) to visualize the stream. This

library produces RTP packets (streamer) which in turn are inserted in p2p
blocks of the P2Pengine and are distributed in the p2p network. The clients

that act as consumers of the stream reassemble the RTP packets and feed the
media player.

7.3.4 Overlay management evaluation

For the evaluation of our P2P streaming system we have used the OPNET

Modeler v.142 in order to test our proposed system under various underlying
network topologies and conditions. Here we present its performance based on

a topology from3 that is also used as a reference topology in4. However,

similar performance has been observed with all topologies we have worked
with. In order to model heterogeneous uploading bandwidth capabilities we set

the uploading bandwidths equal to 4000 kbps (class 4), 1000 kbps (class 3),
384 kbps (class 2), and 128 kbps (class 1) corresponding to a distribution of

15%, 25%, 40%, and 20 % of peers. The average uploading bandwidth of this
distribution is around 1030 kbps; this value will be used hereafter as the

average uploading capacity of the system.

In order to demonstrate the performance of Intra-DOA and Inter-DOA

algorithms we form a randomly created overlay with 2000 nodes where
MB=MS=MI=8. Later in the evaluation we demonstrate the performance of our

system under different values of these parameters. Each node executes the
DOA algorithms every second and the service rate µ of the stream equals 95%

(around 975 kbps) of the average uploading capacity.

In Graph 1 we present the cumulative density function of the energy of each

node divided by the number of its neighbors in the randomly formed overlay

before the appliance and after converge of our algorithms. As we observe the
mean energy (50th percentile of the CDF) has been reduced from 0.07 to

around 0.006 (more than 90%) which corroborates the locality properties of

2
 www.opnet.com

3
 http://www.cs.cornell.edu/People/egs/meridian/data.php

4
 Meng ZHANG, Qian ZHANG, Lifeng SUN, Shiqiang YANG, Understanding the Power of Pull-Based Streaming

Protocol: Can We Do Better?, IEEE JSAC 2007

Deliverable D3.1: Design of the overlay network architecture components

Page 41 of 68

our overlay. In Graph 2 we demonstrate the speed of the reduction of the
energies by executing again the same extreme scenario according to which we

randomly insert initially 2000 peers and then we apply our algorithms. We
observe that the mean energy (50th percentile of the CDF) is reduced by a

factor of 65% (from 0.07 to 0.023) in only 20 seconds, testifying the fast
convergence properties of our optimization algorithms. Using the previous

scenario, Graph 3 presents the CDF of the number of neighbours that each
peer has after convergence of algorithms. Every slow peer (class 3,4) has

exactly 16 neighbours, 8 neighbours in the base overlay and 8

interconnections to the super overlay. These interconnections are distributed to
the class 1 and 2 peers in the super overlay according to their capacity. As the

excess bandwidth of class 2 peers is minimal compared to class 1 peers the
interconnections are distributed to these classes with a ration 31/1. So every

class 2 peer has around 9 neighbours (8 in the super overlay plus one
interconnection to the base overlay on average) while every class 1 peer has

between 39 and 43 neighbours accordingly. Graph 3 shows that our algorithms
eventually balance the number of neighbours that peers of the same class

have.

0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16
0,0

0,2

0,4

0,6

0,8

1,0

 Liquid overlay (left)
 Random overlay (rght)C

um
ul

at
iv

e
de

ns
ity

 fu
nc

tio
n

Enegry of each node

Graph 1Energy of peers.

Deliverable D3.1: Design of the overlay network architecture components

Page 42 of 68

0 20 40 60 80 100
0,00
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09
0,10

E
ne

rg
y

Time (sec)

 10th pecentile of nodes
 50th pecentile of nodes
 90th pecentile of nodes

Graph 2 Speed of energy minimization.

10 15 20 25 30 35 40 45
0,0

0,2

0,4

0,6

0,8

1,0

C
D

F
of

 P
ee

rs

Number of Neighbors

Graph 3 Number of neighbours.

7.4 Content Security

The Vital++ Content Security (CS) architecture has been designed to enable
content providers to control the distribution of their content using a Digital

Rights Management technology. Vital’s DRM system took its requirements from
RBB, the consortium’s content provider, and relate to real-world business

requirements. The requirements include:

Deliverable D3.1: Design of the overlay network architecture components

Page 43 of 68

• Conditional Access to streaming Content

• Encryption of file-based and streamed content where required.

• Allow flexible rights expression

• Integrate with Accounting

• Respect for privacy and consumer rights

• Assertion of fair-use for purposes such as backup/education etc.

• Identity-based conditional access (providing a better alternative to Geo-

IP blocking)

7.4.1 Purpose of the SA

This section elaborates on the requirements described previously and relates
them to particular usage scenarios.

7.4.1.1 Identity-based Conditional Access

By focussing on techniques for fair use and DRM the architecture actually
enables content distribution scenarios, which would otherwise be difficult. One

example is identity-based conditional access. RBB, like many broadcasters, are
state funded to provide content free of charge to citizens of the state.

However, issues arise where citizens are travelling but still want to avail of

their right to access the content, which is funded through their taxes and/or
license fees. Currently, many Internet users are frustrated in attempting to

access such streamed content when they travel because of the process known
as Geo-IP blocking. Here, a black-list of public IP addresses is maintained

based on the network class assignments of the Internet Assigned Number
Authority. (IANA)5. This is a crude mechanism that is obviously problematic

when content is accessed by travelling users, potentially using mobile devices.

The Content Protection Subsystem contains a conditional access system that
evaluates licensing requests against business rules set by the content provider.

These rules can be set across multiple parameters including:

• User Identity (user-based access)

• Group Membership of the User (group-based access)

• Time (i.e. content may only be licensed for a certain timeframe)

• Device capabilities and media encoding

• Accounting rules such as pre-paid versus post-paid billing.

5
 Internet Assigned Numbers Authority – IANA, http://www.iana.org

Deliverable D3.1: Design of the overlay network architecture components

Page 44 of 68

Identity based conditional access enables Vital++ to leverage the strong
authentication, and potentially message encryption, of IMS in identifying

whether a network subscriber is entitled to access content. For example, A
Vodafone Germany subscriber could be allowed to access RBB content

anywhere in the world providing they authenticate using their IMS.

7.4.1.2 Fair Use

The resulting architecture permits “fair use”. Fair use is a legal doctrine, which

applies in both United States and under European law, which permits user to

reproduce portions of copyrighted material for various limited scope purposes.
Examples of fair use include reproducing sections in a long work for

educational use or using thumbnail images in a website. The idea of “Fair Use”
within a DRM system appears to be an oxymoron but it has obvious benefits in

that it promotes the distribution of content while not diminishing the legal
rights of the owners of the intellectual property.

No attempt is made to enforce fair use since what constitutes fair use is not

easily defined. Therefore the courts ultimately decide what constitutes fair use.
This makes it impossible to automate a system to determine if an activity is

indeed fair use. It is possible, however, to keep track of content consumer’s
requests to use content under a “fair use” license. The Vital++ Content

Protection subsystem does so while anonymising the identity of the content
consumer from the content provider. This information is stored in an

anonymisation agent and may be divulged under legal criteria according to the

jurisdiction. This decoupling gives assurance to the content consumer of that
their fair usage is being protected while assuring the content provider that

licensing is being audited for non-repudiation purposes.

7.4.1.3 Integration with Accounting

The CP subsystem integrates with a standardised IMS accounting system using

the Rf and Ro diameter interfaces required for post-paid and pre-paid billing,
respectively. Additionally, a Vital++ accounting and billing system is provided.

This permits a content provider to register a charging scheme for a particular
item or collection of content. A charging scheme may use charging data such

as a cost/byte, a direct item cost and incentivisation schemes based on being a
good “netizen” of the Vital++ overlay by contributing bandwidth and storage to

the overlay. The accounting system is described in more detail in D4.1.

7.4.1.4 Flexible rights expression

By flexible rights expression we mean a mechanism that is rich enough to

permit a content provider to describe rights using a range of parameters
including:

Deliverable D3.1: Design of the overlay network architecture components

Page 45 of 68

• Group and user content access rights;

• Content expiry scheduling; (e.g. RBB mandate that content is only

available for 7 days)

• Different rules for roaming users (some content may not be available

when roaming)

• Rules determining the quality (codec and bit-rate) of licensed content

To achieve these goals the CP subsystem uses the rules engine from the Open

Source Java Drools6 project. This is capable of processing rules and data-types

of effectively arbitrary complexity. A side-effect is that the Content Protection
rules are decoupled from the implementation of the CP subsystem and may be

created and tested using graphical tools. Drools logic is processed using a
workflow system, which we also use within the CPS.

7.4.2 Description of functions

The CPS is integrated within the IMS network as shown below.

Figure 17 : CPS integration within the IMS

The User Equipment (UE) here represents a Vital++ node. The node accesses
the functions of the Content Protection Function, the logic of the Content

Protection Subsystem) using the IMS ISc interface. The ISc is a SIP protocol
connection that is used when the S-CSCF loads a trigger point corresponding to

the message that has been presented to it. In our case the message will be
matched base on a known “service identifier” e.g. content-protection@<vital-

domain> and the Vital++ SIP header that is added to all Vital++ messages.

6
 Drools Business Logic Integration Platform, http://jboss.org/drools/

Deliverable D3.1: Design of the overlay network architecture components

Page 46 of 68

The process of licensing a piece of content follows a Request/Response model

and uses the SIP Instant Messaging conversation mechanism defined by the
3GPP. By re-using an existing mechanism we rely on the existing IMS

authentication and message security model. This is explained in further detail
in D4.1.

The Content Protection Function (CPF) is deployed within a standard IMS

application server corresponding to the Java Community Process’s JSR 2897

specification. This is the latest specification for Sip Servlets. The CP subsystem
runs successfully in the open source “SailFin”8 servlet container.

The CPF may additionally use the HSS to verify a subscriber’s credentials using

the Sh (profile information) and Cx interface. However, this is a non-standard
use of the Cx interface and has not been implemented within Vital++.

The content protection system uses Public Key Infrastructure (PKI) to mutually

authenticate content provider and content consumer. The CPS acts as an
trusted intermediary meaning that the content consumer and provider do not

have to interact directly in the licensing process. The mutual authentication
means that the content consumer can be confident the licensed content is

being licensed by the correct provider and hasn’t been maliciously tampered
with. The content provider benefits from IMS and PKI-based identity

management being used to verify the identity of the consumer making it

difficult for the licensing party to impersonate another user. A Certificate
Authority (CA) is used to associate public-private key pairs with IMS identities.

7.4.2.1 VITAL++ DRM Interface Component

The design and implementation follows the format of the “Mother May I” (MMI)
protocol specified by the Open Media Commons (OMC) initiative9. Our modified

protocol specification is described in greater detail in D4.3. It is based on
sending text-based attribute value pairs and is therefore inherent extensible.

For Vital++ we have re-implemented core components of the OMC DReaM
entirely using Java and using standardised components for workflow

management and rules processing.

7
 JSR SIP Servlet v1.1, http://jcp.org/en/jsr/detail?id=289

8
 Glasfish SailFin, http://wiki.glassfish.java.net/Wiki.jsp?page=SailFin

9
 Open Media Commons initiative, http://openmediacommons.org/

Deliverable D3.1: Design of the overlay network architecture components

Page 47 of 68

7.4.2.2 CP Subsystem Constituent Components

Required CPS components are shown in purple. Optional nodes that may be

aggregated and/or provided by third parties are shown in green.

Figure 18 - CPS model is based on Open Media Commons

7.4.2.3 Client - DRM Specific Player

The DRM Specific player is a client-side player application that has DRM

specific support for handling protected content and licenses. This is the Vital++
client, enhanced with the CPS client library.

7.4.2.4 Client - Disintermediating Agent

This refers to the client side library implementing the Request-side of the

licensing protocol supported by the CPS. It dis-intermediates in that it supports
a flexible licensing model (MMI) that can be customised to fit content

protection and rights management solutions from different vendors. The
server-side counterpart of the client disintermediating agent is the licensing

conductor.

7.4.2.5 Licensor

The licensor is tightly bound to the DRM specific content protection technology.

In Vital++ we have implemented a content protection system suitable for both
live streaming and file sharing.

Deliverable D3.1: Design of the overlay network architecture components

Page 48 of 68

7.4.2.6 Licensing Conductor

The Licensing Conductor plays the role of managing the licensing processes

involved in the CP Subsystem solution. It has interfaces to the CP Subsystem
Client, Shopping and Transaction Service, Authentication Service, Contracts

Manager and the Licensor. It performs the necessary e-commerce transactions
and authentication of the user. It instructs the Licensor to generate the license

for a given user for specific content. The licensing conductor is implemented
using a java workflow engine and may therefore be customised based on

future requirements.

7.4.2.7 Contracts Manager

The Contracts Manager stores business rules associated with content, as well

as user rights. This component has interfaces to the Licensing Conductor and
the Licensor. The Licensor generates a license for a given piece of content

based on the business rules and user rights that are available in the Contracts
Manager.

7.4.2.8 Authentication Service

The authentication service is where subscribers, users and devices are cleared

for access to services and content. Authentication functions in Vital++ are
provided by the IMS Core and augmented by the CA for the purposes of

mutually authenticating content provider and consumer.

7.4.2.9 Shop and Transaction Service (Accounting Services)

The work flow functions of shopping and transacting purchases includes
everything from collecting payments from buyers to paying sellers and making

sure that everyone is appropriately compensated in a secure manner. This

component will be used to ensure that Ro and Rf charging is applied correctly
for consumed media.

7.4.2.10 Content Delivery Server

The OMC content delivery server is replaced by a P2P overlay in Vital++. A

usage example is further described in D4.2. The overlay distributes protected
content while keys are distributed using IMS signalling. A “super distribution”

mechanism is used to ensure that all Vital++ distribution paradigms (live
streaming, file sharing, media-on-demand) can be supported.

7.4.2.11 Packager

The packaging process involves combining content data/files with associated

metadata and creating logical packages that include the defined business rules.

7.4.2.12 Catcher

The Catcher performs content ingestion. It receives content and associated
business rules from the content supplier. The content, which is unprotected at

Deliverable D3.1: Design of the overlay network architecture components

Page 49 of 68

this stage, is passed to the Packager. The business rules associated with the
content are passed to the Contracts Manager.

7.4.2.13 Disintermediation

One of the key features of the CP Subsystem architecture is the ability to

accommodate the inclusion of specific rights management and conditional
access components from third parties while avoiding the need to incorporate all

their back-end components. This is an important feature in any commercial
Vital++ system. A mobile operator may, for example, have deployed an Open

Mobile Alliance DRM system that is currently supported by many handsets from

vendors such as Sony Ericsson and Nokia. The CPS will permit the
incorporation of such a system so long as the required components are

implemented.

The disintermediation system enables multiple instances of these components

to exist in a Content Protection or Conditional Access system.

The content protection specific components of CP Subsystem include: player,

licensor and packager.

Components that are not content protection specific include: a

disintermediating agent, conductor, catcher, licensing conductor, contracts
manager, authentication service, shop and transaction system, and content

delivery service.

The process of disintermediation happens as follows:

1. Client requests a license

2. Front-end service redirects client to a client disintermediation agent

3. Disintermediating agent contacts Conductor (back-end service)

4. Conductor contacts back-end services for authentication and rights

verification

5. Conductor signals front-end service with instructions to deliver license to

client

Front-end service delivers license

Deliverable D3.1: Design of the overlay network architecture components

Page 50 of 68

Figure 19 - Disintermediation process

7.4.3 Message Exchange and Transactions

In this section we give an overview of the MMI profile, which is used for
Vital++. As described earlier, MMI defines a request-response protocol for

licensing content based on the work of SUN’s DReaM project. The Vital++ MMI
profile is described in more detail in D4.3. Additionally we include message

sequence diagrams for content publishing and content licensing using the CP
subsystem.

7.4.3.1 Licensing Workflow

As described previously the licensing conductor uses the Java Business Process
Management (JBPM) open source workflow management engine to describe

the licensing process. This is an inherently flexible approach as we have sought
to decompose the licensing functions into modular blocks corresponding to the

different states of the licensing process. The diagram below shows how request

handling, rules processing and accounting are integrated within a single
workflow.

Deliverable D3.1: Design of the overlay network architecture components

Page 51 of 68

Figure 20. Licensing Workflow Diagram

The JBPM graphical workflow design tool may be used to modify the workflow
without the need to re-implement or recompile any java code.

7.4.3.2 CI/CS interactions

Elements of the workflow are also re-used by the Content Indexing subsystem.
The CI and CP subsystems interact during the content discovery and licensing

phases. The CI requests information from the CP subsystem about:

The licensing model available for a particular content item (e.g. fair use, pre-
paid, etc.)

Whether the content is available to the user or user’s group?

Deliverable D3.1: Design of the overlay network architecture components

Page 52 of 68

Whether the content has been successfully licensed by the user? Once content
has been licensed the CI can make overlay details available to the licensed

user. Also, a user already in possession of a valid unexpired license for a
content item does not have to re-license it.

This interaction is described in more detail in D4.3.

Content Publishing

The following sequence diagram shows how content publishing is achieved,

demonstrating the interactions between a platform user’s Vital++ client, CI
and CP subsystems.

Figure 21. DRM Content Publishing

Content Licensing

The following sequence diagram shows how published content is licensed,
detailing interactions between a user’s Vital++ client, the CP and CI

subsystems.

Deliverable D3.1: Design of the overlay network architecture components

Page 53 of 68

Figure 22. DRM Content Licensing

7.4.4 Description of the Software

The Vital++ Content Protection subsystem is implemented entirely in Java.
This has been done to promote portability of the code to multiple server and

client platforms. Java was also an excellent choice as there are many open
source software libraries and components that could be incorporated within the

Content Protection Subsystem’s codebase in order to accelerate the
development process.

The CPS uses components from multiple open source software projects

including.

• Glassfish SailFin SIP Application Server

• Java Business Process Management (JBPM)

• JBOSS “Drools” Rules Engine

• The GNU SRTP Implementation – modified and extracted from the GNU
ZRTP4J10

• The Java Cryptographic Architecture11

• The Open Media Commons DReaM Rights Management project12

The CPS server components described in ? are deployed in a VMWARE virtual
machine which is run on an ESX hypervisor in the TSSG server laboratory. The

10

 GNU Telephony ZRTP4J, http://www.gnutelephony.org/index.php/GNU_ZRTP4J_How_To
11

 Oracle, Java SE Security, http://java.sun.com/javase/technologies/security/
12

 Open Media Commons, http://www.openmediacommons.org

Deliverable D3.1: Design of the overlay network architecture components

Page 54 of 68

server is accessible via a VPN connection and may also be given a public IP
address for test purposes.

The architecture is easily scaled as the License Conductor’s workflow engine

may be run in a cluster configuration as can the GlassFish servlet container.
The use of the scalable and decoupled software components means the CPS

can theoretically be of use in trials of varying scales. However, we have not
analysed performance figures of the current solution.

7.5 P2P Media Exchange

7.5.1 Introduction

Distribution of media items in the context of live streaming or video on
demand requires the use of a media streaming protocol such as RTP or RTSP.

Definition of proprietary media streaming formats or adoption of other not
open source compatible solutions such as Microsoft’s ASF was out of the scope

of the project and it was also posing certain limitations with respect to the
development of the client architecture.

Both clients (Monster and BCT Client) are Java Applications and the only media
support that can be integrated is based on the Java Media Framework

implementation. JMF supports both RTP and RTSP reception but it cannot

create outgoing RTSP streams. So the remaining solution was the use of RTP
that is supported by JMF with respect of both sending and receiving.

Moreover, integrating RTP with P2P transport capabilities stems also from the
fact that IMS media transport utilises RTP in most cases. So it was more

straightforward to proceed with the integration by using existing items and not
replacing them. This procedure allows for more transparent deployment of the

P2P layer in the client as far as the media management components are
concerned.

The way the P2PEngine is integrated with the JMF player component is based
on the provision of a custom RTPConnector implementation. While the default

implementation of JMF uses UDP/IP for transport in the integrated JMF/P2P
solution, the RTP Managers are initialised with instances of a custom

implementation of an RTPConnector. All of the instances are configured to use
the same P2P Engine through a wrapper object. This object receives all the

outgoing data and concatenates these into P2P Engine compliant blocks to be

pushed to the engine for transmission. For blocks retrieved from the P2P
Engine a segregation process follows. This process leads to the acquisition of

separate RTP packets that are distributed according to their audio/video type
to the proper RTP Managers and Players.

The following picture presents the architecture of the above approach. In
typical JMF/RTP receive/transmit setup there is need for feeding the JMF

Manager(s) Objects with the networking settings (IP Addresses/UDP Ports). In
the case of the P2P based transport, RTP Manager(s) are configured to use

Deliverable D3.1: Design of the overlay network architecture components

Page 55 of 68

specific RTPConnector implementations that in turn initialise and maintain the
appropriate PushSourceStreams for incoming RTP packets and

OutputDataStreams for outgoing RTP packets. The Block Receiver and P2P
Engine wrapper have been initialised in advance using the overlay

bootstrapping information acquired through the CI procedures.

RTP

Manager(s)

UDP Sockets

Audio Video

RTP Manager(s)

RTPSocketAdapter

implements

RTPConnector

S
o

ck
O

u
tp

u
tS

tr
e

a
m

im
p

le
m

e
n

ts

O
u

tp
u

tD
a

ta
S

tr
e

a
m

S
o

ck
In

p
u

tS
tr

e
a

m

im
p

le
m

e
n

ts

P
u

sh
S

o
u

rc
e

S
tr

e
a

m

Audio

RTPSocketAdapter

implements

RTPConnector

S
o

ck
O

u
tp

u
tS

tr
e

a
m

im
p

le
m

e
n

ts

O
u

tp
u

tD
a

ta
S

tr
e

a
m

S
o

ck
In

p
u

tS
tr

e
a

m

im
p

le
m

e
n

ts

P
u

sh
S

o
u

rc
e

S
tr

e
a

m

Video

P2P Engine Wrapper

PacketBufferingEngine implements BlockReceiver

P2P Engine

Typical JMF Rx/Tx Setup P2P/JMF Rx/Tx Setup

Figure 23: JMF Adaptation

7.5.2 P2P Client Engine

The p2p engine is integrated in the vital++ client and it is responsible for the
distribution of data between the peers of the overlays. According to the type of

the media (Video-on-demand, Live-Streaming and file sharing) a different
scheduler is triggered. Therefore the transport mechanism inside the engine

and the interface with the media part of the client is independent to the
running scheduler.

Deliverable D3.1: Design of the overlay network architecture components

Page 56 of 68

More specifically, the functions of the interface that are responsible for pushing
and retrieving data from the p2p engine are transparent to the type of the

exchanged data. File chunks are encapsulated for file sharing (bit torrent
approach) and rtp packets for vod and live streaming. Data and message

transfer use completely independent chain in order to allow usage of different
transfer protocol both on transport and application level (i.e. to allow the

usage of TCP and UDP for messages and data). The implemented protocol
transmits UDP packets, it is developed under Python and involves the use of

Twisted framework13 and cPickle (part of the standard Python library). The

main target of the protocol is to reduce network fragmentation by reducing the
size of transferred packets while keeping data in bigger blocks, to avoid

network congestion and put the foundations for flow control by strictly
controlling the sending rate. In order to fulfill these requirements, the protocol

is provided with a receive buffer, a sending queue, a splitting/reconstructing
routine that takes care also of byte encoding/decoding and a timed recursive

call to the send procedure. The exchanged data are primitive types inside
Python dictionaries. This is to improve encoding flexibility by giving the ability

to choose among many encoding methods (for example bencode14, the
BitTorrent way for this, netstring15 or others).

On the sender side, the dictionary is first encoded by cPickle. Then, if the size
of data block is bigger than the given MTU parameter, it is split according to

the MTU and the resulting chunks are put in other dictionaries tracking the
sequence number, the number of chunks and the actual chunk number. Then

they are put inside the sending queue. On the receiver side an entry is inserted

in the incoming buffer in order to collect all the chunks and reorder them.
When they are all arrived, the full block is decoded and sent upstream in order

to perform the desired actions.

In order to give a minimum protection from network congestion and

subsequent packet loss, the sending queue is exploited to send packets at a
given rate. Also, all the parameters given to the protocol are adjustable at

runtime, thus allowing the presence of flow control algorithms in the future.
The performance of the protocol is pretty good: despite the use of a quite high

level language, the Twisted framework gives the ability to keep a very low CPU
consumption (around or less than 10% on a modern machine) and to achieve

a very good timer resolution.

7.6 Future Enhancements

In this section, we will describe possible elements of the VITAL++ architecture
which can improve the performance and robustness of the Vital++ system.

13

 http://twistedmatrix.com
14

 http://pypi.python.org/pypi/BitTorrent-bencode/5.0.8

15 http://cr.yp.to/proto/netstrings.txt

Deliverable D3.1: Design of the overlay network architecture components

Page 57 of 68

Those elements are not depicted in the overall architecture but provide
additional or alternative ways to realize functionalities.

7.6.1 Client DHT

In order to store client related data, a distributed hash table (DHT) is

advisable. Relevant client data can be SIP contacts to enable direct P2P

message exchange. But also other client related data, like its client certificate,
playlists or profiles can be stored in a DHT to overcome device changes or

offline times. We propose to realize such a DHT with the P2PSIP16.

Bootstrapping

In order to join a DHT, a client queries the overlay management sub-

architecture for its position in the DHT overlay to retrieve a list of its
neighbours. This can be signed by the corresponding application server in

order to justify the initial communication with the new neighbourhood, i.e. to
legitimize the new node.

Store and get

For the store operation, the storing node does not know if the information it is
going to store is really related to the writer. Also, for the get operation, the

reading node does not know whether the received information is

unchanged/genuine. Figure 24 shows these relations.

Is he allowed to store that key?
Is he the one he claims to be?

Is the data really from him? Is the data really unchanged?

Writing node Storing node Reading node
get()store()

Figure 24: DHT Security issues

Whenever a node performs a store operation, it will store not only the data
chunk, but also a signature over the data chunk and a sequence number. The

sequence number can be used by the storing node to detect a replay attack.
The storing node must also store its own certificate in the DHT with the same

mechanism to allow an offline-verification of its signature. When a reading
node now retrieves the data chunk, it can verify the integrity of the data by

checking the signature. This way, data stored in a DHT can be secured against
falsification by either writing or storing node.

16

 http://tools.ietf.org/wg/p2psip/

Deliverable D3.1: Design of the overlay network architecture components

Page 58 of 68

7.6.2 NASS Attachment

The network attachment sub-system (NASS) is an NGN element, standardised

by ETSI/TISPAN. The NASS holds information about the physical connectivity
of the user, i.e. bandwidth properties etc. Thus, an entity like the overlay

management can retrieve this information and use them in order to position a

peer in an overlay. Overlays can thus be created more related to the real
network topology in terms of neighbourhood relations, but also in terms of

intended data flows, regarding to the upload and download bandwidth available
at the users connection.

This attachment is optional, because the deployments of a NASS in real
operator networks are still rare. This is because the NASS itself is not a

mandatory element in the ETSI/TISPAN NGN architecture.

Without NASS support, overlays can only be built based on reported bandwidth

measurements between the peers. As this is quite imprecise due to additional
network traffic, additional information about a user’s internet connectivity will

help to improve the process of overlay building with the aim to create overlay
paths, which are related to the real network.

7.7 Summary of Network Components

During the process of integrating two totally different technologies such as IMS

and P2P, several issues arose since there are similar aspects of functionality
implemented differently by each technology. However, the Vital++ orientation

dictated that IMS maintains the control part of all the transactions mainly
regarding signalling and meta-information circulation while P2P has the control

over content transfer.

Therefore a number of Network Components were designed to provide all the

required information for creating and accessing overlays so that authorised and

fully controlled access to multimedia items can be achieved. The functionalities
offered by those network components were grouped and organised in a way

that provides solutions for:

• Peer Authentication (P2PA-SA)

• User Authorisation, Accounting and Content Protection (CP-SA)
• Content Publication, Searching (CI-SA)

• Overlay Maintenance (OM-SA)

Client software has to interact in a specific way with the sub-architectures

realising the above functionalities in order to join overlays either for providing
or consuming content. By adapting SIP Instant Messages as the main

communication protocol of the client side with the network elements it is
ensured that only IMS authorised users can have access to the Vital++

services.

The certificate management that is offered by the P2P Authentication sub-

architecture allows the users to generate certificates and also validate signed

Deliverable D3.1: Design of the overlay network architecture components

Page 59 of 68

messages against the claimed identity of the signer so that trust can be
established among peers.

Published content is secured against unauthorised access by the use of
encryption keys generated during publication. Circulation of those keys to

users interested in acquiring the offered content is restricted by relevant
business rules communicated to the systems by publishers again this is done

through the CP-SA. Having granted listing access a user can identify a content
item and proceed further by attempting to join an overlay. Accepting to receive

the encryption key for content retrieval the user agrees on using the received

item in a fair way. This item is stored in the accounting system not only for
billing purposes but also for creating a relevant record that binds the user

identity with its acceptance regarding the fair use.

Publication of content is parameterised to allow for provision of sufficient

metadata that can allow for more complex services to be created through the
interaction with the CI-SA. Close relation is established between Content

Protection and Content Indexing subsystems so that possible limitations
expressed during content publication can be enforced.

Finally, while operating behind the CI-SA, the OM-SA bootstraps the overlays
by taking into account the location of the involved peers so that optimal

syntheses are guaranteed. However, not actually being a network side element
but operating as a distributed algorithm across the network the P2P Engine

ensures the continuous evolution of the overlays towards optimal operation.

Deliverable D3.1: Design of the overlay network architecture components

Page 60 of 68

8 Conclusions

In this deliverable, we have described the fundamental building blocks for all
VITAL++ services, scenarios and transactions. The functionalities and their

intended purpose have been explained, as well as the network interfaces and
protocols. The draft architecture, as defined in the deliverables 2.1 and 2.2

has been refined and extended according to the real-world environment as
well as to the requirements, which have been reviewed and analysed.

Based on the introduced functionalities, higher functions and services can be

realised, e.g. community services, which require authentic P2P messaging, or
commercial P2P media distribution, which requires a content security

mechanism and content indexing. As well, e.g. content distribution networks
can be planned more efficiently, using the central intelligent overlay

management.

This deliverable is complemented by deliverable 3.2, where application

programmer’s interfaces and functional block interworking are in the focus.

Deliverable D3.1: Design of the overlay network architecture components

Page 61 of 68

9 Annexes

9.1 Annex 1 - Content Indexing XML Schema
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://xml.netbeans.org/schema/ci"

 xmlns:tns="http://xml.netbeans.org/schema/ci"

 elementFormDefault="qualified">

 <xsd:complexType name="keywords">

 <xsd:sequence>

 <xsd:element name="keyword" type="xsd:string" minOccurs="0"

maxOccurs="unbounded"></xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="message">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="tns:content-item" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="function">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="publication|publication-successful|publication-

failure|publication-modify|publication-remove|query|query-result|content-selection|peer-list|peer-

list-update|located-content-update"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:attribute>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="peer">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="net-address" type="xsd:string"></xsd:element>

 <xsd:element name="port" type="xsd:string"></xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="content-item">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="tns:content"/>

 <xsd:element ref="tns:peer" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="content">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="id" type="xsd:string" ></xsd:element>

 <xsd:element name="locator" minOccurs="0">

 <xsd:complexType>

 <xsd:sequence>

Deliverable D3.1: Design of the overlay network architecture components

Page 62 of 68

 <xsd:element name="provider" type="xsd:string"

minOccurs="0"></xsd:element>

 <xsd:element name="programme" type="xsd:string"

minOccurs="0"></xsd:element>

 <xsd:element name="category" type="xsd:string"

minOccurs="0"></xsd:element>

 <xsd:element name="subcategory" type="xsd:string"

minOccurs="0"></xsd:element>

 <xsd:element name="series" type="xsd:string"

minOccurs="0"></xsd:element>

 <xsd:element name="episode" type="xsd:string"

minOccurs="0"></xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="title" type="xsd:string" minOccurs="0"></xsd:element>

 <xsd:element name="author" type="xsd:string" minOccurs="0"></xsd:element>

 <xsd:element name="publisher" type="xsd:string" minOccurs="0"></xsd:element>

 <xsd:element name="shorttitle" type="xsd:string" minOccurs="0"></xsd:element>

 <xsd:element name="description" type="xsd:string" minOccurs="0"></xsd:element>

 <xsd:element name="thumbnail" type="xsd:anyURI" minOccurs="0"></xsd:element>

 <xsd:element name="duration" type="xsd:duration" minOccurs="0"></xsd:element>

 <xsd:element name="keywords" type="tns:keywords" minOccurs="0"></xsd:element>

 <xsd:element name="publishdate" type="xsd:dateTime" minOccurs="0"></xsd:element>

 <xsd:element name="datefrom" type="xsd:dateTime" minOccurs="0"></xsd:element>

 <xsd:element name="dateto" type="xsd:dateTime" minOccurs="0"></xsd:element>

 <xsd:element name="lang" type="xsd:language" minOccurs="0"></xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

9.2 Annex 2 – XPath Query Example

Query Message:
<message function="query" xmlns="http://xml.netbeans.org/schema/ci">

 <content-item>

 <content>

 <locator>

 <provider>provider-1</provider>

 <programme>programme-1</programme>

 <subcategory>subcategory-1</subcategory>

 <episode>episode-1</episode>

 </locator>

 <keywords>

 <keyword>key-11</keyword>

 <keyword>commonkey</keyword>

 </keywords>

 <dateto>2010-03-11T10:25:30.539+02:00</dateto>

 <lang>EL</lang>

 </content>

 </content-item>

 <content-item>

 <content>

 <locator>

 <provider>provider-2</provider>

Deliverable D3.1: Design of the overlay network architecture components

Page 63 of 68

 <category>category-2</category>

 <series>series-2</series>

 </locator>

 <keywords>

 <keyword>key-20</keyword>

 <keyword>key-22</keyword>

 </keywords>

 <dateto>2010-03-11T10:25:30.539+02:00</dateto>

 <lang>EL</lang>

 </content>

 </content-item>

 <content-item>

 <content>

 <locator>

 <provider>provider-3</provider>

 <programme>programme-3</programme>

 <subcategory>subcategory-3</subcategory>

 <episode>episode-3</episode>

 </locator>

 <keywords>

 <keyword>key-31</keyword>

 <keyword>commonkey</keyword>

 </keywords>

 <dateto>2010-03-11T10:25:30.540+02:00</dateto>

 <lang>EL</lang>

 </content>

 </content-item>

 <content-item>

 <content>

 <locator>

 <provider>provider-4</provider>

 <category>category-4</category>

 <series>series-4</series>

 </locator>

 <keywords>

 <keyword>key-40</keyword>

 <keyword>key-42</keyword>

 </keywords>

 <dateto>2010-03-11T10:25:30.541+02:00</dateto>

 <lang>EL</lang>

 </content>

 </content-item>

 <content-item>

 <content>

 <locator>

 <provider>provider-5</provider>

 <programme>programme-5</programme>

 <subcategory>subcategory-5</subcategory>

 <episode>episode-5</episode>

 </locator>

 <keywords>

 <keyword>key-51</keyword>

 <keyword>commonkey</keyword>

 </keywords>

 <dateto>2010-03-11T10:25:30.541+02:00</dateto>

Deliverable D3.1: Design of the overlay network architecture components

Page 64 of 68

 <lang>EL</lang>

 </content>

 </content-item>

</message>

XPath Query:
/ns0:content-item[(ns0:content/ns0:locator/ns0:provider='provider-1' or

ns0:content/ns0:locator/ns0:provider='provider-2' or ns0:content/ns0:locator/ns0:provider='provider-

3' or ns0:content/ns0:locator/ns0:provider='provider-4' or

ns0:content/ns0:locator/ns0:provider='provider-5') and (

ns0:content/ns0:locator/ns0:programme='programme-1' or

ns0:content/ns0:locator/ns0:programme='programme-3' or

ns0:content/ns0:locator/ns0:programme='programme-5') and (

ns0:content/ns0:locator/ns0:category='category-2' or ns0:content/ns0:locator/ns0:category='category-

4') and (ns0:content/ns0:locator/ns0:subcategory='subcategory-1' or

ns0:content/ns0:locator/ns0:subcategory='subcategory-3' or

ns0:content/ns0:locator/ns0:subcategory='subcategory-5') and (

ns0:content/ns0:locator/ns0:series='series-2' or ns0:content/ns0:locator/ns0:series='series-4') and

(ns0:content/ns0:locator/ns0:episode='episode-1' or ns0:content/ns0:locator/ns0:episode='episode-3'

or ns0:content/ns0:locator/ns0:episode='episode-5') and (ns0:content/ns0:keywords/ns0:keyword =

'key-11' or ns0:content/ns0:keywords/ns0:keyword = 'commonkey' or

ns0:content/ns0:keywords/ns0:keyword = 'key-20' or ns0:content/ns0:keywords/ns0:keyword = 'key-22'

or ns0:content/ns0:keywords/ns0:keyword = 'key-31' or ns0:content/ns0:keywords/ns0:keyword =

'commonkey' or ns0:content/ns0:keywords/ns0:keyword = 'key-40' or

ns0:content/ns0:keywords/ns0:keyword = 'key-42' or ns0:content/ns0:keywords/ns0:keyword = 'key-51'

or ns0:content/ns0:keywords/ns0:keyword = 'commonkey')]/ns0:content

9.3 P2P Authentication Messages

9.3.1 Server Certificate Acquisition

SIP Message from the application server to the client after its registration.

MESSAGE sip:joe@10.147.65.111:5062 SIP/2.0

Max-Forwards: 15

Vitalpp: P2PA OfferCert

P-Asserted-Identity: <sip:joe@open-ims.test>

To: <sip:joe@open-ims.test>

CSeq: 1 MESSAGE

Via:

 SIP/2.0/UDP 10.147.160.42:4060;

 branch=z9hG4bK66ff.9490aaa1.0,

 SIP/2.0/UDP 10.147.160.42:6060;received=10.147.160.42;rport=6060;

 branch=z9hG4bK66ff.06d6bc46.0;i=1,

 SIP/2.0/TCP 10.147.65.111:5060;

 branch=z9hG4bKdaac28ceafc1fc0d4f82bc3d3dbe01ac1e08

Content-Type: text/xml

Call-ID: 10.147.65.111_2_6309805174015877988

From: <sip:Vitalpp@open-ims.test>;tag=g6f8sc3x-4

P-Called-Party-ID: <sip:joe@open-ims.test>

Content-Length: 1252

<?xml version="1.0"?>

 <vitalpp-cert>

<publickey>308201b73082012c06072a8648ce3804013082011f02818100fd7f53811d75122952d

f4a9c2eece4e7f611b7523cef4400c31e3f80b6512669455d402251fb593d8d58fabfc5f5ba30f6c

Deliverable D3.1: Design of the overlay network architecture components

Page 65 of 68

b9b556cd7813b801d346ff26660b76b9950a5a49f9fe8047b1022c24fbba9d7feb7c61bf83b57e7c

6a8a6150f04fb83f6d3c51ec3023554135a169132f675f3ae2b61d72aeff22203199dd14801c7021

5009760508f15230bccb292b982a2eb840bf0581cf502818100f7e1a085d69b3ddecbbcab5c36b85

7b97994afbbfa3aea82f9574c0b3d0782675159578ebad4594fe67107108180b449167123e84c281

613b7cf09328cc8a6e13c167a8b547c8d28e0a3ae1e2bb3a675916ea37f0bfa213562f1fb627a012

43bcca4f1bea8519089a883dfe15ae59f06928b665e807b552564014c3bfecf492a0381840002818

02dd45eb5afb3c8dc1a92ac255a771827e80f26455d6a413a8bfd22e9919ee66056ae4a481f7c162

7f24ac09804c31c60e2fcb79c4966ac2445319b07d98b59a4c6e7ef43504944054095ea1adb9e711

1b04968ce5cb375713066253e59a8a0d889ec3cfca69f00eea131e5d04e1b65d509e453ed020dfba

6eb9d28b136c0fb27</publickey>

 <attributes>

 <avp><name>identity</name><value>sip:Vitalpp@open-

ims.org</value></avp>

 <avp><name>signer</name><value>Vital++-Root</value></avp>

 </attributes>

<signature>302c02140a1aa1c289d39efcc86c6a0d20bd78414193b26e021404c21d12e8e16be62

87d3a843d2fde2f2b52093a</signature>

</vitalpp-cert>

9.3.2 Client Certificate Authorization

SIP Message holding an unsigned certificate from client, as it is being sent to

the server for signing.

MESSAGE sip:10.147.65.111:5060 SIP/2.0

Call-ID: bf9b33c8c820c8ce533ff02a4820d581@10.147.65.90

CSeq: 4 MESSAGE

From: <sip:alice@open-ims.test>;tag=1006

To: <sip:10.147.65.111:5060>

Via:

 SIP/2.0/UDP 10.147.65.90:5060;branch=z9hG4bKf9929ecd08ec35a1c3a157e14691c3d3

Max-Forwards: 20

Route: <sip:orig@scscf.open-ims.test:6060;lr>

VitalPP: P2PA RequestSigning

Content-Type: text/xml

User-Agent: Fokus MONSTER Version: ${project.version}

Content-Length: 1049

<vitalpp-cert>

<publickey>308201b73082012c06072a8648ce3804013082011f02818100fd7f53811d75122952d

f4a9c2eece4e7f611b7523cef4400c31e3f80b6512669455d402251fb593d8d58fabfc5f5ba30f6c

b9b556cd7813b801d346ff26660b76b9950a5a49f9fe8047b1022c24fbba9d7feb7c61bf83b57e7c

6a8a6150f04fb83f6d3c51ec3023554135a169132f675f3ae2b61d72aeff22203199dd14801c7021

5009760508f15230bccb292b982a2eb840bf0581cf502818100f7e1a085d69b3ddecbbcab5c36b85

7b97994afbbfa3aea82f9574c0b3d0782675159578ebad4594fe67107108180b449167123e84c281

613b7cf09328cc8a6e13c167a8b547c8d28e0a3ae1e2bb3a675916ea37f0bfa213562f1fb627a012

43bcca4f1bea8519089a883dfe15ae59f06928b665e807b552564014c3bfecf492a0381840002818

0706163767146329efba6295c39490bfe9bb74ae91592a09095d0b6386d7c124ef9581a9ad7a39f9

34d79ef1d5a8152d0cc299391f745ff39093f97219457b57b9f42f79911f0f782f75f0cdc4c4dcf5

6185602113f417b872794303a7895ed4fb68de911c7d25861991f2778ab911980aa62b6cf97b5d5d

d70f8c2db1efd155d</publickey>

 <attributes>

 <avp><name>identity</name><value>sip:alice@open-ims.test</value></avp>

 </attributes>

</vitalpp-cert>

Deliverable D3.1: Design of the overlay network architecture components

Page 66 of 68

This message is then answered with the following response, which holds also a
signature by the application server.

SIP/2.0 200 OK

Content-Length: 1242

To: <sip:10.147.65.111:5060>;tag=g6kux0p9-4c

Cseq: 4 MESSAGE

Via: SIP/2.0/UDP

 10.147.65.90:5060;rport=5060;branch=z9hG4bKf9929ecd08ec35a1c3a157e14691c3d3

Content-Type: text/xml

From: <sip:alice@open-ims.test>;tag=1006

Call-Id: bf9b33c8c820c8ce533ff02a4820d581@10.147.65.90

Server: Glassfish_SIP_1.0.0

<vitalpp-cert>

<publickey>308201b73082012c06072a8648ce3804013082011f02818100fd7f53811d75122952d

f4a9c2eece4e7f611b7523cef4400c31e3f80b6512669455d402251fb593d8d58fabfc5f5ba30f6c

b9b556cd7813b801d346ff26660b76b9950a5a49f9fe8047b1022c24fbba9d7feb7c61bf83b57e7c

6a8a6150f04fb83f6d3c51ec3023554135a169132f675f3ae2b61d72aeff22203199dd14801c7021

5009760508f15230bccb292b982a2eb840bf0581cf502818100f7e1a085d69b3ddecbbcab5c36b85

7b97994afbbfa3aea82f9574c0b3d0782675159578ebad4594fe67107108180b449167123e84c281

613b7cf09328cc8a6e13c167a8b547c8d28e0a3ae1e2bb3a675916ea37f0bfa213562f1fb627a012

43bcca4f1bea8519089a883dfe15ae59f06928b665e807b552564014c3bfecf492a0381840002818

0706163767146329efba6295c39490bfe9bb74ae91592a09095d0b6386d7c124ef9581a9ad7a39f9

34d79ef1d5a8152d0cc299391f745ff39093f97219457b57b9f42f79911f0f782f75f0cdc4c4dcf5

6185602113f417b872794303a7895ed4fb68de911c7d25861991f2778ab911980aa62b6cf97b5d5d

d70f8c2db1efd155d</publickey>

 <attributes>

 <avp><name>identity</name><value>sip:alice@open-ims.test</value></avp>

 <avp><name>signer</name><value>sip:Vitalpp@open-ims.test</value></avp>

 </attributes>

<signature>302c02140b16486c7b250935a19e54682b25c04f3cf8614f02147798ae9245e146505

41cdcca29181cce076d2e7f</signature>

</vitalpp-cert>

9.3.3 Authentic P2P Message Exchange

The following SIP message is used to transport a signed message, along with
the sender’s client certificate.

MESSAGE sip:bob@open-ims.org SIP/2.0

Call-ID: 004b38a41051b4661deae58204165eb1@10.147.65.90

CSeq: 5 MESSAGE

From: <sip:alice@open-ims.test>;tag=1009

To: <sip:bob@open-ims.org>

Via: SIP/2.0/UDP

 10.147.65.90:5062;branch=z9hG4bK0402ca2be335a30b98933b4e43a27f3f

Max-Forwards: 20

Route: <sip:orig@scscf.open-ims.test:6060;lr>

VitalPP: P2PA message

Content-Type: multipart/mixed; boundary="vitalpp-separator-XFDLJFIX"

User-Agent: Fokus MONSTER Version: ${project.version}

Content-Length: 1606

Deliverable D3.1: Design of the overlay network architecture components

Page 67 of 68

--vitalpp-separator-XFDLJFIX

Content-Type: text/plain

Hello, you received a signed and very important message!

--vitalpp-separator-XFDLJFIX

Content-Type: text/xml

<message-signature>

302c02142f21d8cf62450188be10edd0dd0ae1cbcc47e93f0214123753a0a896a92efd4b298fad47

bf5708f4aa6d

</message-signature>

--vitalpp-separator-XFDLJFIX

Content-Type: text/xml

<vitalpp-cert>

<publickey>308201b73082012c06072a8648ce3804013082011f02818100fd7f53811d75122952d

f4a9c2eece4e7f611b7523cef4400c31e3f80b6512669455d402251fb593d8d58fabfc5f5ba30f6c

b9b556cd7813b801d346ff26660b76b9950a5a49f9fe8047b1022c24fbba9d7feb7c61bf83b57e7c

6a8a6150f04fb83f6d3c51ec3023554135a169132f675f3ae2b61d72aeff22203199dd14801c7021

5009760508f15230bccb292b982a2eb840bf0581cf502818100f7e1a085d69b3ddecbbcab5c36b85

7b97994afbbfa3aea82f9574c0b3d0782675159578ebad4594fe67107108180b449167123e84c281

613b7cf09328cc8a6e13c167a8b547c8d28e0a3ae1e2bb3a675916ea37f0bfa213562f1fb627a012

43bcca4f1bea8519089a883dfe15ae59f06928b665e807b552564014c3bfecf492a0381840002818

06269b38adc18f3c57312d1efd58dba483ff90cad17769d9c3a59984829e2cd627fcd6cd3d6ec797

14392da6bf435b017f2f486de152a68470fcc4c96e8a65a569bd18f7467244ecea5bd6b81198dd55

dd8721c7ed4f484f4e71316123e17c85700a48ee6b6aeba272df64a0876b2d0574764a5c22cbf8ae

31ad07a0acaede272</publickey>

 <attributes>

 <avp><name>identity</name><value>sip:alice@open-ims.test</value></avp>

 <avp><name>signer</name><value>sip:Vitalpp@open-ims.test</value></avp>

 </attributes>

<signature>302c0214661113c1276c9518eecfc064fc9dd4aaaffa477b021468d30a3d61699b447

12a8fddcc4a2be724161922</signature>

</vitalpp-cert>

9.3.4 Diffie-Hellman Key Agreement

For reference, the Diffie-Hellman key agreement process is depicted in the
following table as sequence of operations.

Step Server Client

1 Chooses a prime p and an
integer g.

2 computes A=ga mod p

3 sends A, g and p to the client

4 computes Ks=A
b mod p computes B=gb mod p

5 computes Kc=B
a mod p

Kc=Ks, because

Deliverable D3.1: Design of the overlay network architecture components

Page 68 of 68

Ks = A
b mod p = (ga mod p)b mod p

 = gab mod p

 = (gb mod p)a mod p = Ba mod p = Kc

Thus, both entities have the same key material and can use it to create a

common symmetric key, which can then be used e.g. for AES encryption.

