
On the architecture and the design of P2P live
streaming system schedulers.

Athanasios Christakidis, Nikolaos Efthymiopoulos, Spyros Denazis, Odysseas Koufopavlou

Department of Electrical and Computer Engineering
University of Patras

Patras, Greece
{schristakidis, nefthymiop, sdena, odysseas}@ece.upatras.gr

Abstract -- In this paper we analyze P2P live streaming

systems. Through this analysis we obtain the crucial parameters
for their performance in terms of bandwidth utilization, set-up
time, fairness and stability. We propose a sender driven multi
objective decision function for neighbor selection in order to adapt
the distribution of available bandwidth to the overlay connections
while simultaneously we further exploit the locality properties of
an overlay. At last we develop and apply a receiver driven block
selection with a content diffusion optimization algorithm that
achieves fast and efficient diffusion of every block. The evaluation
of our system reveals its very high levels of performance in terms
of setup time, bandwidth utilization, its fair behavior in the
distribution of available aggregate bandwidth in various nodes and
its stable behavior as system grows and aggregate upload
bandwidth changes. Finally by comparing our system with other
recently developed we observe that it vastly outperforms.

Keywords- p2p live streaming, distributed scheduling

I. INTRODUCTION

P2P live streaming is a real time application with strict

delivery time constraints while it is very demanding in terms
of the aggregate bandwidth required for the delivery of the
stream to the participating peers. In general, a server
generates a video stream at a given service rate which is then
divided into blocks followed by their delivery to a small
subset among the participating peers. Finally, all peers
exchange these blocks in order to reproduce the whole video
stream.

Peers involved in these systems have heterogeneous
uploading bandwidth capabilities while the average uploading
bandwidth capability of the participating peers constrains the
maximum service rate of the video stream that can be
delivered successfully to all peers[9]. Accordingly, an
efficient P2P streaming system must be able to deliver a video
stream with a service rate as close as possible to the average
uploading capability of the participating peers with the
smallest possible delay, called setup time. As setup time we
define the time interval between the generation of a block
from the origin server and its distribution to every peer in the
system.

Furthermore, a P2P live streaming system has to adapt
to the dynamic underlying network conditions and cope with
dynamic node arrivals and departures. This results in varying
number of peers and uploading capacities which impact the

stability of the system with respect to the uninterrupted
delivery of the streaming service. Finally, fairness among
nodes guarantees equal bandwidth distribution to the
participating nodes and so they acquire equal number of
blocks of the video stream in the predefined setup time.

Several approaches that have been recently proposed for
creating P2P streaming systems may fall into two major
categories characterized by the way the stream is diffused in
all nodes.

In the first category the diffusion of the stream is
dictated by the graph of the overlay in which nodes
participate. The pioneer representative of this category is
Spitstream [4][10]. Spiltstream uses a formation of trees
whereby each node is leaf in every node but one. These trees
are derived from a locality aware DHT called Pastry. Blocks
are assigned equiprobably into a number of stripes equal to
the number of trees. Each tree distributes one stripe by
propagating each one of its blocks from parent to its children.
SplitStream and systems alike have two advantages. They are
topologically aware (trees are formed according to the
network distance between nodes) and the diffusion of blocks
is done through predefined paths according to the graph
topology. These lead to smaller setup times as the propagation
of a block from the root of the tree towards the leaf nodes is
done through nodes which may be physically close in the
underlying network without any control overhead. However
these systems suffer from two main drawbacks: a) they don’t
take into account the heterogeneous and changing uploading
capacities of the peers, and b) they cannot react quickly
enough to the dynamic behavior of the participating peers and
the underlying network, as observed in commercial P2P
streaming systems [18]. As a result these systems exhibit a
low upload bandwidth utilization of the participating peers
and they can't guarantee the stability of the video playback.

In the second category the stream is diffused with the
help of a scheduler that resides in every peer. In these systems
the peers are part of a mesh overlay. Each node maintains
connectivity with a small subset of nodes which are
considered as being its neighbors in the overlay. Blocks that
are generated from the server are assigned play-back
deadlines. Each peer maintains a number of lists (buffers),
one per neighbor. Each one of these buffers contains missing
blocks by its neighbor that their playback deadline has not
expired yet. This information is exploited by schedulers

running at each peer that are responsible for exchanging
blocks in order to diffuse the stream to every peer.

We can distinguish two types of schedulers. In sender
driven schedulers, the sender decides to which neighbor must
send the next block. In [2][2], the selection criteria used by
the sender concern the most deprived node, namely the node
that misses the largest number of blocks. When the deprived
node is found, a randomly chosen block is forwarded during
the next transmission.

The main advantage of these systems is their flexibility
that allows them to exploit the heterogeneity of the
participating peers and deal with the dynamic behavior of the
network. This leads to higher levels of bandwidth utilization
by optimizing the flows among the participating nodes.
However, this flexibility introduces a bandwidth overhead
due to large numbers of buffers exchanges and duplicate
block transmissions. The later is attributed to the fact that
during the propagation of blocks in an unstructured overlay,
each block may follow different paths before reaching a node
resulting in duplicate receptions. Finally, the lack of locality
awareness in the random mesh that is used as a graph and the
additional phases of negotiations for the block exchanges,
introduce large setup time values in the systems that follow
this kind of architecture. Only in AnySee there is a
mechanism for reflecting locality in the random mesh, by
exchanging neighbors that are not so close in the underlying
network with other closer nodes, at the expense, though, of a
greatly unbalanced graph.

In contrast, in receiver driven schedulers, the receiver
explicitly requests from a sender which block should be
transmitted next. In Prime [15][15], the server of the stream
constructs a spanning tree out of the mesh overlay, putting the
server at the root of the tree. Then the participating peers
periodically request from their parents in the tree the newly
created blocks, while they request any remaining blocks from
other neighbors in the mesh overlay.

The main advantage of these systems is the high levels
of bandwidth utilization due to the overlay construction
mechanism and the elimination of duplicate block
transmissions due to the receiver driven scheduler. On the
other hand they suffer from very large values of setup time,
lack of fairness and temporary waste of bandwidth in case of
more frequent node departures.

This paper proposes a novel architecture of a P2P live
streaming scheduler. It is designed in such a way that
synergistically optimize the trade-offs observed among
various parameters impacting the performance of P2P
streaming systems.

The P2P overlay is a symmetric locality aware and self-
organized overlay that is analyzed in [21] where nodes are
organized in such a way that they have similar number of
neighbors and they can be dynamically reconfigured
according to changes in the underlying network conditions.

The other component, the scheduler, has been designed
to perform two separate but interdependent decisions:
selecting the next neighbor and selecting the specific block to
transmit to. The former is performed according to a multi-

objective sender driven neighbor selection process based on
an algorithm that optimizes the flows in the overlay according
to the capacities of the nodes [2]and exploiting locality
information of our overlay. The latter is performed according
to a receiver driven block selection process with a content
diffusion optimization algorithm that achieves fast and
efficient diffusion of every block while considerably reducing
duplicate block transmissions. These result in a P2P live
streaming system that exhibits very small setup times and
high levels of bandwidth utilization. Furthermore, we observe
high degrees of fairness in upload bandwidth utilization
among all nodes and a very stable and scalable system as it
grows in numbers of participating peers.

The rest of this paper is organized as follows. In Section
II we briefly present P2P live streaming systems and we
describe our P2P live streaming scheduler. In Section III we
evaluate its performance. Finally, in Section IV we give our
conclusions and the future work.

II. P2P STREAMING SYSTEM SCHEDULING

Without loss of generality we assume that in a P2P
streaming system there is a bootstrap node which is used for
the admission of the nodes in the system while it acts as a
source for providing the video stream. Furthermore, the video
stream is divided into blocks. The block size depends on the
service rate, say μ (measured in bps that the video playback
requires), and the number of blocks in which the bootstrap
node divides one second of video playback. We define this
number as Nb blocks/sec representing also the frequency of
new blocks generated by the source. So each block is
generated every 1/Nb seconds at the bootstrap node, with a
size equal to Lb=μ/Nb bits.

Figure 1. Snapshot of a buffer in a node with the states

of the blocks.

Every block is also associated with a time stamp

indicating the time of its generation. All peers reproduce
(play) the video with a delay called set-up time which we
denote it as ts. As mentioned previously, setup time is the
time that elapses from the generation of a block at the source
until its distribution (propagation) to every node in the P2P
system. Accordingly, at every time instant every peer plays
the block that was generated ts times before in the origin
server, provided of course that this block has eventually
reached its destination.

During this setup time a number of blocks have been
generated, equal to Nb*ts, the first of which will be played by

every node after ts seconds. Therefore, at every instant every
node is required to keep track of all Nb*ts blocks generated
within a sliding window of ts seconds. For this reason every
node maintains a buffer of size Nb*ts that holds the state of
these blocks. Two states are of interest: received blocks and
missing blocks (not delivered yet). Figure 1 provides a
snapshot of the states of blocks of a buffer in a node.

Whenever the origin server produces a new block it
forwards it first to a small subset of the peers (even one)
which participate in the system. The effect of the size of this
subset in the performance of the system is analyzed in
[18][18]. Each peer maintains connections and exchanges
blocks with a relatively small number of nodes, which we call
its neighbors, in order to retrieve the whole video stream. To
know exactly which blocks should be exchanged, each peer
exchanges the contents of its buffer with every one of its
neighbors. Then a scheduler that runs in the nodes decides
which block should be transmitted next to which neighboring
node.

A. Scheduler for neighbour selection.

Our scheduler extends the selection criteria and vastly

improves its performance by also taking advantage of the
network distance between neighbours provided by the locality
aware overlay. Starting from sender driven schedulers like the
one described in [2], our proposed scheduler is enhanced with
a decision mechanism that takes into account short
propagation paths based on STT values. As STT (single trip
time) we express the network latency between two nodes that
are neighbours in the overlay. We measure this latency
dynamically for the dynamic overlay optimization and we can
exploit this knowledge of the conditions in the underlying
network in our scheduler.

In order to achieve this goal we define a decision
function, d(i,j) that provides a metric used for the selection of
a neighbouring node j for block transmission by node i. The
decision function is given by the following formula:

𝑑𝑑(𝑖𝑖, 𝑗𝑗) =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑗𝑗)
𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑏𝑏𝑏𝑏𝑏𝑏_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

−
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖, 𝑗𝑗)

|𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖)|
 (1)

The node selected for block transmission is the one with

the maximum d(i,j) ∀j. In this equation |neighbours(i)|
denotes the total number of neighbours of i. Additionally
rank(i,j) is a function that returns the position of node j
in a list of nodes ordered in incremental STT value with node
i. We have chosen to factorize the network latencies between
i and its neighbours in this way in order to make our
scheduler independent of the STT values and as such suitable
for every underlying network topology. Finally, buf_size
is Nb*ts as described in section II and denotes the number of
blocks that nodes exchange at each time instant. Finally,
parameter per is a constant representing the percentage of
the buffer size. We have successfully experimented with
values of parameter per close to very small percentages of
buffer size (between 5%-10%).

If we examine the second term of the decision function,
we note that it is a linear function of rank(i,j)assuming
values in the range of [0,1], with 0<rank(i.j)<=|neighbours(i)|.
When nodes have small differences for missing blocks, the
first term is very small and so rank(i,j) has a dominating
effect on the selection of node j while the diffusion of blocks
is done according to network locality in order to achieve fast
block propagation. As we have observed through our
simulations this is taking place in most of the cases. On the
other hand, when differences for missing blocks in the order
of per*buf_size are observed, our locality aware
scheduler approximates the previous behaviour with
difference(i,j)becoming the dominant parameter for
selecting node j. In this way we guarantee high degrees of
fairness in the distribution of blocks.

B. Scheduler for block selection

In the previous section we have analyzed the factors that

affect the selection of a node for block transmission. In this
section we will focus on the mechanism that determines
which block should be sent to the selected node aiming at
minimizing duplicate block transmissions and fastly diffusing
newly produced or rare blocks within an overlay
“neighborhood”. The decision is receiver driven, in other
words the sender has been notified by the potential receiver
about the block the receiver wishes to receive.

Due to the symmetric property of the locality aware
overlay, a receiver node is already informed about the buffer
contents of its neighbors. Therefore, by applying a matching
process a receiver node can proactively request different
blocks from its neighbors thus resulting in the reduction of
duplicates. The matching process is accomplished by
performing a weighted matching algorithm between the
missing blocks and those neighbors that have them, while
favoring those nodes that are closer to the requesting node
since they have higher chances for selection. Accordingly,
whenever a node’s scheduler chooses the next node for
transmission, it also takes into account whether the selected
node has already requested a specific block, otherwise it
selects one randomly.

Ideally, our algorithm could have accomplished
complete elimination of duplicate block transmissions.
However, it takes time equal to STT(i,j) for a request message
to reach node j from node i. During this time, node j may
have already transmitted a block to node i other than the
requested block. As the blocks that node j can send to node i,
are STT(i,j)/tsend(j) the efficiency of our algorithm depends on
two parameters: a) the small values of STTs, which are
provided by our locality overlay, and b) the Nb as it is the
parameter that influences the time tsend (eq. (4)). The specific
values of these parameters eventually put an upper bound on
the performance of our algorithms as it is shown in our
evaluation tests.

III. EVALUATION

 For the evaluation of our P2P streaming system we
have used OPNET Modeler [23] in order to avoid the
imperfections of a custom made simulator. We have tested
our proposed system under various underlying network
topologies topology from [5], where the provided round trip
time measurements were gathered using the King method
between globally distributed DNS servers. In all topologies
we have observe similar behavior of our system. We have
opted for this particular real data set in order a) to avoid
inaccurate conclusions which a network model may
introduce, and b) to use a real topology of globally distributed
nodes and so have a fair benchmark for a locality aware
overlay without concentrations of peers in specific regions
that favor our system.

First in order to present our evaluation with an accurate
way we present the input parameters that affect the behavior
of a P2P live streaming system, the trade-off of which needs
to be efficiently optimized and we give a short definition of
them.

Parameter Definition

Number of
neighbors

The set of nodes that a node uses in
order to exchange blocks.

Service rate The playback byte rate of the video.

Nb The number of blocks that a second
of video is divided

Number of nodes The number of participating nodes
in the system a given time instant.

Average capacity The aggregate upload bandwidth
that participating nodes have
divided by their number

Duplicate blocks Blocks that transmitted to a specific
node from multiple senders

Table 1. Major input parameters that affect the

functionality of a p2p live streaming system.

Evaluation

criteria
Definition

Setup time The time interval between the
generation of a block from the
origin server and its distribution to
every peer in the system

Maximum
achievable service
rate

The maximum playback byte rate of
the video that a system is able to
deliver to every participating node

Fairness The equal utilization of the upload
bandwidth among receivers in order
to have a percentage of blocks

successfully delivered to every node

Table 2. Major evaluation criteria that we present

Graphs 1 and 2 show the ratio between the maximum

achievable service rate that each system can deliver and the
average capacity, for various setup time values given a
constant rate for block generation (Nb=10 blocks/sec). As
will see in the rest of this section by selecting a different a
value of Nb our system has better performance but in this
point we want to present the general trends and behavior of
our system. For the Graph 1 we have used homogenous
upload capacities whereas Graph 2 is based on heterogeneous.
Inspecting the two graphs, we observe that the same
performance trend emerges from either case i.e. homogeneous
and heterogeneous upload capacities. Furthermore, the same
system performs slightly worst in case of heterogeneous
upload capacities. This is because in the case of a highly
heterogeneous environment, although our system has much
better performance than recently proposed, a small percentage
of upload bandwidth is wasted due to heterogeneity. That
problem can be solved by the creation of virtual nodes in L-
CAN [21] that will have approximately equal upload
bandwidth. We leave this architecture as future work.

Graph 1. Maximum achievable service rate divided by average upload

bandwidth of each system under various setup time intervals. Nodes in each
system contribute equal upload bandwidths

Applying a locality aware overlay, L-CAN, results in a
significant increase of the achievable service rate (LD), as
opposed to a mesh overlay (MD), because of the smaller STT
values that exist between the neighbours in L-CAN.
Moreover, introducing a scheduler that further exploits
locality using our L-CAN, the LS system further increases the
service rate, especially when the size of the peer’s buffers
increases (buffer_size=setup-time/Nb). This is due to the fact
that small sizes of the node’s buffers result in a larger
probability for duplicate packets which mitigates the benefits
of our scheduler.

Graph 2. Maximum achievable service rate of each system under

various setup time intervals. Nodes in each system contribute heterogeneous
upload

Further enhancing LS system with our matching
algorithm, the LSM system can achieve a maximum service
rate equal to 85% and 75% of the average capacity of the
participating nodes, for the homogeneous and heterogeneous
scenarios respectively, even for very small setup times (4
seconds in our example). This is due to the reduction of
duplicates, where in the case of LSM, a node received 15% of
duplicates, whereas a node in the LS system received 30% of
duplicate blocks.

Finally, we observe that the increase of the setup time
has a smaller effect in the increase of the achievable service
rate in the case of LSM when compared with the other three
systems. This is due to the fact, that our matching algorithm
can’t reduce the percentage of the duplicates packets below
certain asymptotic thresholds (approximately 5% and 18% in
the homogeneous and heterogeneous scenarios, respectively)
as the large value of Nb=10 results in reaching the upper
bound of our matching algorithm’s performance as discussed
in section III.E.

The Graph 3 and 4 illustrate the trade-off between setup
time and Nb which in fact defines an optimum for the
operation of a P2P streaming system as we also predicted in
section II. Our proposed system captures this optimum. In
Graph 3, assuming an application which requires a service
rate equal to 90% of the average upload bandwidth, we depict
the setup time that MD and LSM needs in order to deliver that
service rate. We present this setup time as a function of Nb.
We observe that the optimum is achieved at the point Nb=7
with a setup time 3.4 secs.

Alternatively, in Graph 4 we assume a delay intensive
application, which has a setup time requirement equal to 4
seconds, and we present under different values of Nb the
maximum achievable service rate again for MD and LSM. In
this case the optimum is achieved for Nb=7 at the 96% of the
service rate.

Graph 3. We present setup time under various values of Nb for a

service rate equal to the 90% of the average capacity.

Graph 4. Maximum achievable service rate under various values of Nb

for a setup time equal to 4 seconds

Graph 5. Percentage of the duplicate block transmissions as a function

of the setup time(LSM).

Through Graph 5 we can observe that for values of

setup time ranging from 3-5 sec we still achieve a small

percentage of duplicate block transmissions with a mean
value around 7%-8%. On the other hand for setup times
below 3 seconds we have started to observe higher
percentages of duplicate block transmissions that vastly
increase below 2 seconds. As should be evident in the case of
set up time 2 seconds, our system won’t be able to deliver the
whole stream, which needs 90% of average capacity, as a
mean of 15% of the nodes upload bandwidth is wasted
through duplicate block transmission. In this case we need a
much more sophisticated scheduler that will exploit the
probabilities with which nodes exchange blocks and make
also multiple requests. We leave this as a future work.

Another parameter studied in our evaluation is the
impact of the number of neighbours that each node has. In
graph 7 we present the percentage of duplicate block
transmissions as a function of average neighbours per node
(determined from L-CAN dimensions). The service rate in
this case is 90% of the average capacity and again it is
simulated using a system with 2000 nodes. The value of Nb is
7 blocks per second and the setup time is 3.4 seconds. As we
observe duplicates are low for small values of neighbours and
increase fast until they asymptotically reach 6%- 7% for
neighbourhood sets larger than 12.

Graph 7. Percentage of duplicate block transmissions as a function of

average number of neighbours.

Finally, in the last section of our evaluation we compare

our streaming system with two others that have been already
proposed.

This system, that we compare ours to, is Prime [15]. As
we have already mentioned in our introduction, Prime is a
system with a receiver driven scheduler. Nodes form a
random mesh in which the root node, and the server of the
stream, forms a spanning tree. A node in Prime distinguishes
the neighbour which is its parent in the tree from its other
neighbours. From its parent it requests the more recent blocks
while from the others the remaining. Prime uses a parameter,
called diffusion interval Δ, which defines which blocks in a
node’s buffer should be consider the most “recent”. The other

parameter is ω which multiplied by Δ defines the set up time
of the system.

Graph 5. CDF of the percentage of successful block receptions in

Prime and LSM for 2000 nodes

In order to compare it with our system we simulated a

Prime system with 2000 nodes using the parameters that are
used in the original Prime paper. We set Δ=6secs and ω=6 for
a total setup time of 36 sec. As we didn’t find any value for
the Nb in the original work we run several simulations and
found that the optimum value was 10. In graph 5 we compare
a Prime system with the above configuration and with service
rate equal to the 80% of the average capacity with our system
in which we have Nb=7 blocks per second, setup time=3.4
secs and service rate equal to the 90% of the average
capacity. As we can see the two systems exhibit the same
behavior even if our system has around 90% smaller setup
time and 12% higher service.

On top of a more balanced version of Anysee in order to
improve also its performance, we applied the most deprived
scheduler, as our matching scheduler requires a bidirectional
graph. In order to compare only the locality properties of our
system with Anysee, we also applied over our locality graph
the most deprived scheduler. We simulated both the above
systems with 1000 nodes, service rate equal to 90% of the
average capacity and Nb=10 blocks per second. The results
are presented in graph 6.

As we can observer from graph the two systems exhibits
the same behavior even if our system with just the deprived
scheduler has smaller setup time, which can be further,
reduced with the application of our content diffusion
algorithm. We highlight here that this algorithm cannot be
applied in Anysee due to its asymmetric architecture.

Graph 6. CDF of the percentage of successful block receptions in

Prime and LSM for 2000 nodes

IV. CONCLUSIONS AND FUTURE WORK

We have shown that a locality aware overlay increases
the bandwidth utilization and reduces in a vast degree the
setup time. Furthermore, we have proposed a locality aware
based scheduler which also guarantees the fair block
diffusion. Finally, we have developed a technique for
optimized content diffusion between peers and blocks that
greatly reduce the percentage of duplicate block transmissions
while the control overhead remains negligible. Our design
choices of our system and the algorithms thereof have been
justified and motivated by the analysis of and the
observations drawn from of the proposed model.

Our future work will focus on three areas of research as
a direct result of our evaluation findings. The first is the
creation of an architecture that is self-organized and handles
the vast heterogeneity in terms of peer upload bandwidths.
The second is the development of a more sophisticated
scheduler that exploits exchange probabilities and makes
multiple block requests. At last we are currently work on a
theoretical model in order to define analytically the optimal
value for stream fragmentation and the optimal number of
neighbors.

REFERENCES

[1] S. Ratnasamy et al., A Scalable Content Addressable
Network, Proc. ACM SIGCOMM, 2001

[2] Laurent Massoulie, Andy Twigg, Christos Gkantsidis,
Pablo Rodriguez Randomized decentralized
broadcasting algorithms. INFOCOM 2007

[3] Ashwin Bharambe, Cormac Herley, and Venkata
Padmanabhan, “Analyzing and improving bittorrent
performance,”

Tech. Rep. MSR-TR- 2005-03, Microsoft Research, feb
2005

[4] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec,
Animesh Nandi, Antony Rowstron, Atul Singh,
SplitStream: High-Bandwidth Multicast in Cooperative
Environments SOSP’03

[5] http://www.cs.cornell.edu/People/egs/meridian/data.php
[6] http://pdos.csail.mit.edu/P2Psim/kingdata/
[7] Castro, M., Druschel, P., Hu, Y. C., and Rowstron, A.

Exploiting network proximity in distributed hash tables.
In International Workshop on Future Directions in
Distributed Computing (FuDiCo) June 2002

[8] A. Rowstron and P. Druschel, Pastry: Scalable,
Distributed Object Location and Routing for Large-scale
Peer-to-peer Systems, Proc. Middleware, 2001

[9] R. Kumar, Y. Liu, and K. W. Ross, Stochastic Fluid
Theory for P2P Streaming Systems, INFOCOM 2007,
Anchorage, Alaska, 2007.

[10] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec,
Animesh Nandi, Antony Rowstron, Atul Singh,
SplitStream: High-Bandwidth Multicast in Cooperative
Environments SOSP’03

[11] “PPLive,” http://www.pplive.com.
[12] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A

Lightweight Network Location Service without Virtual
Coordinates. In Proceedings of ACM SIGCOMM,
August 2005.

[13] Nazanin Magharei, Reza Rejaie, Yang Guo, Mesh or
Multiple-Tree: A Comparative Study of Live P2P
Streaming Approaches, INFOCOM , Anchorage,
Alaska, 2007

[14] X. Hei, C. Liang, J. Liang, Y. Liu and K.W. Ross, A
Measurement Study of a Large-Scale P2P IPTV System,
November 2006, to appear in IEEE Transactions on
Multimedia

[15] Nazanin Magharei, Reza Rejaie, PRIME: Peer-to-Peer
Receiver-drIven MEsh-based Streaming, INFOCOM ,
Anchorage, Alaska, 2007

[16] Dimirti P. Bertskeas, Network Optimization: Continuous
and Discrete Models, Athena Scientific, May 1998

[17] Peter Pietzuch, Jonathan Ledlie, and Margo Seltzer,
Supporting Network Coordinates on PlanetLab, In
Proceedings of WORLDS 2005

[18] Xiaojun Hei, Yong Liu Keith W. Ross, Inferring
Network-Wide Quality in P2P Live Streaming Systems,
Technical Report http://eeweb.poly.edu/faculty/yongliu

[19] www.opnet.com
[20] Meng ZHANG, Qian ZHANG, Lifeng SUN, Shiqiang

YANG, Understanding the Power of Pull-Based
Streaming Protocol: Can We Do Better?, IEEE JSAC
2007

[21] Nikolaos Efthymiopoulos, Athanasios Christakidis,
Spyros Denazis, Odysseas Koufopavlou, “ L-CAN:
Locality aware structured overlay for P2P live
streaming”, in Lecture Notes in Computer Science,
Volume 5274, Springer, 2008

